Stable Numerical Differentiation Algorithms Based on the Fourier Transform in Frequency Domain

Yan He, Huilin Xu, Xiaoyan Xiang
{"title":"Stable Numerical Differentiation Algorithms Based on the Fourier Transform in Frequency Domain","authors":"Yan He, Huilin Xu, Xiaoyan Xiang","doi":"10.32861/ajams.82.34.41","DOIUrl":null,"url":null,"abstract":"A class of stable numerical differential algorithms is constructed based on the Fourier transform. The instability of the numerical differentiation problem is overcome by modifying the integral “kernel” in the frequency domain. The convergence of the approximate derivatives is ensured based on some reasonable assumptions of the modified “kernel” function. The a-posteriori choice strategy of the regularization parameter is considered. Moreover, the convergence analysis and error estimate of the approximate derivatives are also given.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/ajams.82.34.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A class of stable numerical differential algorithms is constructed based on the Fourier transform. The instability of the numerical differentiation problem is overcome by modifying the integral “kernel” in the frequency domain. The convergence of the approximate derivatives is ensured based on some reasonable assumptions of the modified “kernel” function. The a-posteriori choice strategy of the regularization parameter is considered. Moreover, the convergence analysis and error estimate of the approximate derivatives are also given.
基于频域傅里叶变换的稳定数值微分算法
基于傅里叶变换构造了一类稳定的数值微分算法。通过对频域积分“核”的修改,克服了数值微分问题的不稳定性。通过对改进的“核”函数的一些合理假设,保证了近似导数的收敛性。考虑了正则化参数的后验选择策略。此外,还给出了近似导数的收敛性分析和误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信