{"title":"1 Comment comprendre la mesure du spin et l’expérience EPR-B ? Une interprétation causale","authors":"M. Gondran, Alexandre Gondran","doi":"10.1051/978-2-7598-2265-2.C028","DOIUrl":null,"url":null,"abstract":"How can we understand the spin measure and the EPR-B experience? A causal interpretation Spin is an internal degree of freedom of any particle with no equivalent in classical mechanics. To understand its reality, in this paper, we go back to the Stein-Gerlach experiment which in 1922 revealed the 1/2 spin of the electron. This experiment is the archetype of measurement in quantum mechanics. It summarizes the so called problem of measurement (Schroedinger’s cat). The spatial and temporal solution of Pauli’s equation is necessary in order to understand the numerous subtleties of this experiment. Especially, it obliges to consider the spatial extension of the wave function. We show that the De Broglie-Bohm theory (dBB), which defines a reality underlying the usual quantum mechanics by adding hidden variables (particles positions), gives a causal and realistic explanation of this experiment. The David Bohm version of the EinsteinPodolsky-Rosen (EPR-B) experiment which highlights the non locality of a pair particles entangled by their spin uses Stein-Gerlach types of machines. We show that the dBB theory also explains this experiment. Moreover, our proposed new causal interpretation corrects the defects of the former Bohm interpretation. It allows to decompose the wave function of the two entangled particles in two unique particle wave functions. 1. Expérience de Stern et Gerlach En étudiant en 1921 et 1922 un jet d’atomes d’argent traversant l’entrefer d’un aimant où règne un champ magnétique fortement inhomogène, Otto Stern et Walther Gerlach [10] mettent en évidence un résultat expérimental qui contredit la prévision théorique classique de l’époque : le faisceau, au lieu de s’élargir, se sépare en deux taches distinctes d’intensité identique. Nous supposerons comme schématisé par la figure 1 que le champ magnétique B est dirigé selon l’axe Oz et que le faisceau atomique arrive perpendiculairement à cet axe (selon Oy). La déviation est due au moment magnétique induit par le moment cinétique interne (spin) de l’électron le moins lié de l’atome d’argent. 2. Résolution par l’équation de Pauli 2.1 Source ponctuelle ou extension spatiale : spineur L’état d’une particule de spin 1/2 est décrit par une fonction d’onde Ψ(x, t), appelée spineur de Pauli, qui admet deux composantes complexes Ψ+(x, t) et Ψ−(x, t). Au moment d’entrer dans le champ magnétique (t = 0), on peut associer à chaque atome d’argent un spineur correspondant à un état pur, comme dans de nombreux livres de cours de mécanique quantique [9, 5, 16, 2] :","PeriodicalId":282223,"journal":{"name":"Ondes, matière et Univers","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ondes, matière et Univers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/978-2-7598-2265-2.C028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
How can we understand the spin measure and the EPR-B experience? A causal interpretation Spin is an internal degree of freedom of any particle with no equivalent in classical mechanics. To understand its reality, in this paper, we go back to the Stein-Gerlach experiment which in 1922 revealed the 1/2 spin of the electron. This experiment is the archetype of measurement in quantum mechanics. It summarizes the so called problem of measurement (Schroedinger’s cat). The spatial and temporal solution of Pauli’s equation is necessary in order to understand the numerous subtleties of this experiment. Especially, it obliges to consider the spatial extension of the wave function. We show that the De Broglie-Bohm theory (dBB), which defines a reality underlying the usual quantum mechanics by adding hidden variables (particles positions), gives a causal and realistic explanation of this experiment. The David Bohm version of the EinsteinPodolsky-Rosen (EPR-B) experiment which highlights the non locality of a pair particles entangled by their spin uses Stein-Gerlach types of machines. We show that the dBB theory also explains this experiment. Moreover, our proposed new causal interpretation corrects the defects of the former Bohm interpretation. It allows to decompose the wave function of the two entangled particles in two unique particle wave functions. 1. Expérience de Stern et Gerlach En étudiant en 1921 et 1922 un jet d’atomes d’argent traversant l’entrefer d’un aimant où règne un champ magnétique fortement inhomogène, Otto Stern et Walther Gerlach [10] mettent en évidence un résultat expérimental qui contredit la prévision théorique classique de l’époque : le faisceau, au lieu de s’élargir, se sépare en deux taches distinctes d’intensité identique. Nous supposerons comme schématisé par la figure 1 que le champ magnétique B est dirigé selon l’axe Oz et que le faisceau atomique arrive perpendiculairement à cet axe (selon Oy). La déviation est due au moment magnétique induit par le moment cinétique interne (spin) de l’électron le moins lié de l’atome d’argent. 2. Résolution par l’équation de Pauli 2.1 Source ponctuelle ou extension spatiale : spineur L’état d’une particule de spin 1/2 est décrit par une fonction d’onde Ψ(x, t), appelée spineur de Pauli, qui admet deux composantes complexes Ψ+(x, t) et Ψ−(x, t). Au moment d’entrer dans le champ magnétique (t = 0), on peut associer à chaque atome d’argent un spineur correspondant à un état pur, comme dans de nombreux livres de cours de mécanique quantique [9, 5, 16, 2] :