Selling robustness margins: A framework for optimizing reserve capacities for linear systems

Xiaojing Zhang, M. Kamgarpour, P. Goulart, J. Lygeros
{"title":"Selling robustness margins: A framework for optimizing reserve capacities for linear systems","authors":"Xiaojing Zhang, M. Kamgarpour, P. Goulart, J. Lygeros","doi":"10.1109/CDC.2014.7040396","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for solving robust optimal control problems with modulated uncertainty sets. We consider constrained uncertain linear systems and interpret the uncertainty sets as “robustness margins” or “reserve capacities”. In particular, given a certain reward for offering such a reserve capacity, we address the problem of determining the optimal size and shape of the uncertainty set, i.e. how much reserve capacity our system should offer. By assuming polyhedral constraints, restricting the class of the uncertainty sets and using affine decision rules, we formulate a convex program to solve this problem. We discuss several specific families of uncertainty sets, whose respective constraints can be reformulated as linear constraints, second-order cone constraints, or linear matrix inequalities. A numerical example demonstrates our approach.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes a method for solving robust optimal control problems with modulated uncertainty sets. We consider constrained uncertain linear systems and interpret the uncertainty sets as “robustness margins” or “reserve capacities”. In particular, given a certain reward for offering such a reserve capacity, we address the problem of determining the optimal size and shape of the uncertainty set, i.e. how much reserve capacity our system should offer. By assuming polyhedral constraints, restricting the class of the uncertainty sets and using affine decision rules, we formulate a convex program to solve this problem. We discuss several specific families of uncertainty sets, whose respective constraints can be reformulated as linear constraints, second-order cone constraints, or linear matrix inequalities. A numerical example demonstrates our approach.
销售稳健性边际:线性系统优化储备能力的框架
提出了一种具有调制不确定性集的鲁棒最优控制问题的求解方法。我们考虑有约束的不确定线性系统,并将不确定性集解释为“鲁棒边际”或“储备能力”。特别是,给定提供这种储备容量的一定奖励,我们解决了确定不确定性集的最佳大小和形状的问题,即我们的系统应该提供多少储备容量。通过假设多面体约束,限制不确定性集的类别,并使用仿射决策规则,构造了一个凸规划来解决这一问题。我们讨论了几个特定的不确定性集合族,它们各自的约束可以被重新表述为线性约束、二阶锥约束或线性矩阵不等式。一个数值例子说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信