S. Labdai, L. Chrifi-Alaoui, S. Drid, L. Delahoche, P. Bussy
{"title":"Real-Time Implementation of an Optimized Fractional Sliding mode Controller on the Quanser-Aero helicopter","authors":"S. Labdai, L. Chrifi-Alaoui, S. Drid, L. Delahoche, P. Bussy","doi":"10.1109/ICCAD49821.2020.9260546","DOIUrl":null,"url":null,"abstract":"This paper examines the performance of an optimized fractional sliding mode controller on the two degrees of freedom (2-DOF) Quanser AERO helicopter testbed. In order to reduce the chattering inherited from the classical sliding mode, the sliding surface will be chosen in a fractional hyperplane. We will prove via a rigorous Lyapunov-based analysis the convergence of the Quanser aero angles to the desired ones, and we will guarantee the robustness against external perturbations. The surface fractional order and the designed controller parameters and will be chosen via the genetic algorithm optimization method, the cost function will be chosen in order to minimize both the chattering and the tracking errors. The results of this work will be illustrated through numerical simulations and experimental application on the Quanser AERO Helicopter testbed.","PeriodicalId":270320,"journal":{"name":"2020 International Conference on Control, Automation and Diagnosis (ICCAD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Control, Automation and Diagnosis (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD49821.2020.9260546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper examines the performance of an optimized fractional sliding mode controller on the two degrees of freedom (2-DOF) Quanser AERO helicopter testbed. In order to reduce the chattering inherited from the classical sliding mode, the sliding surface will be chosen in a fractional hyperplane. We will prove via a rigorous Lyapunov-based analysis the convergence of the Quanser aero angles to the desired ones, and we will guarantee the robustness against external perturbations. The surface fractional order and the designed controller parameters and will be chosen via the genetic algorithm optimization method, the cost function will be chosen in order to minimize both the chattering and the tracking errors. The results of this work will be illustrated through numerical simulations and experimental application on the Quanser AERO Helicopter testbed.