A Hybrid Feature Selection Algorithm

Chunyong Yin, Luyu Ma, Lu Feng, Jin Wang, Zhichao Yin, Jeong-Uk Kim
{"title":"A Hybrid Feature Selection Algorithm","authors":"Chunyong Yin, Luyu Ma, Lu Feng, Jin Wang, Zhichao Yin, Jeong-Uk Kim","doi":"10.1109/AITS.2015.35","DOIUrl":null,"url":null,"abstract":"Feature selection algorithm in intrusion detection, data mining and pattern recognition plays a crucial role, it deletes unrelated and redundant features of the original data set to the optimal feature subset which are applied to some evaluation criteria. Due to the low accuracy, the high false positive rate and the long detection time of the existing feature selection algorithm, in the paper, we put forward a hybrid feature selection algorithm towards efficient intrusion detection, this algorithm chooses the optimal feature subset by combining the correlation algorithm and redundancy algorithm. Experimental results show that the algorithm shows almost and even better than the traditional feature selection algorithm on the different classifiers.","PeriodicalId":196795,"journal":{"name":"2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AITS.2015.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Feature selection algorithm in intrusion detection, data mining and pattern recognition plays a crucial role, it deletes unrelated and redundant features of the original data set to the optimal feature subset which are applied to some evaluation criteria. Due to the low accuracy, the high false positive rate and the long detection time of the existing feature selection algorithm, in the paper, we put forward a hybrid feature selection algorithm towards efficient intrusion detection, this algorithm chooses the optimal feature subset by combining the correlation algorithm and redundancy algorithm. Experimental results show that the algorithm shows almost and even better than the traditional feature selection algorithm on the different classifiers.
一种混合特征选择算法
特征选择算法在入侵检测、数据挖掘和模式识别中起着至关重要的作用,它将原始数据集中不相关和冗余的特征删除到最优特征子集中,并将其应用到一些评价准则中。针对现有特征选择算法准确率低、误报率高、检测时间长等问题,本文提出了一种针对高效入侵检测的混合特征选择算法,该算法结合相关算法和冗余算法选择最优特征子集。实验结果表明,该算法在不同分类器上的表现几乎优于传统的特征选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信