Coupled analysis-synthesis dictionary learning for person re-identification

Lingchuan Sun, Yun Zhou, Zhuqing Jiang, Aidong Men
{"title":"Coupled analysis-synthesis dictionary learning for person re-identification","authors":"Lingchuan Sun, Yun Zhou, Zhuqing Jiang, Aidong Men","doi":"10.1109/ICIP.2017.8296304","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel coupled dictionary learning method, namely coupled analysis-synthesis dictionary learning, to improve the performance of person re-identification in the non-overlapping fields of different camera views. Most of the existing coupled dictionary learning methods train a coupled synthesis dictionary directly on the original feature spaces, which limits the representation ability of the dictionary. To handle the diversities of different original spaces, We first employ local Fisher discriminant analysis (LFDA) to learn a common feature space for close relationship of the same people in different views. In order to enhance the representation power of the coupled synthesis dictionary, we then learn a coupled analysis dictionary by transforming the common feature space into the coupled feature space. Experimental results on two publicly available VIPeR and CUHK01 datasets have validated the effectiveness of the proposed method.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a novel coupled dictionary learning method, namely coupled analysis-synthesis dictionary learning, to improve the performance of person re-identification in the non-overlapping fields of different camera views. Most of the existing coupled dictionary learning methods train a coupled synthesis dictionary directly on the original feature spaces, which limits the representation ability of the dictionary. To handle the diversities of different original spaces, We first employ local Fisher discriminant analysis (LFDA) to learn a common feature space for close relationship of the same people in different views. In order to enhance the representation power of the coupled synthesis dictionary, we then learn a coupled analysis dictionary by transforming the common feature space into the coupled feature space. Experimental results on two publicly available VIPeR and CUHK01 datasets have validated the effectiveness of the proposed method.
人再识别的耦合分析-综合字典学习
本文提出了一种新的耦合字典学习方法,即耦合分析-合成字典学习,以提高在不同摄像机视图的非重叠视场中人物再识别的性能。现有的耦合字典学习方法大多直接在原始特征空间上训练耦合合成字典,这限制了字典的表示能力。为了处理不同原始空间的多样性,我们首先使用局部Fisher判别分析(LFDA)来学习同一人在不同视角下的密切关系的共同特征空间。为了增强耦合综合字典的表示能力,我们将公共特征空间转化为耦合特征空间,学习一个耦合分析字典。在两个公开的VIPeR和CUHK01数据集上的实验结果验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信