Computing Terms Semantic Relatedness by Knowledge in Wikipedia

Dexin Zhao, Liangliang Qin, Pengjie Liu, Zhen Ma, Yukun Li
{"title":"Computing Terms Semantic Relatedness by Knowledge in Wikipedia","authors":"Dexin Zhao, Liangliang Qin, Pengjie Liu, Zhen Ma, Yukun Li","doi":"10.1109/WISA.2015.41","DOIUrl":null,"url":null,"abstract":"Many researchers have recognized Wikipedia as a resource of huge dynamic knowledge base in recent years. This paper provides a new approach for obtaining measures of terms semantic relatedness, which maps terms to relevant Wikipedia articles as the background information for analyzing. The proposed algorithm WLA focuses on the hyperlink structure and summary paragraph extracted from the topic pages to compute two terms similarity. Comparing with other similar techniques, the approach is less computationally intensive, because only the first paragraph is analyzed, not the entire text. Our method achieves good performance on the widely used test set WS-353.","PeriodicalId":198938,"journal":{"name":"2015 12th Web Information System and Application Conference (WISA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th Web Information System and Application Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2015.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many researchers have recognized Wikipedia as a resource of huge dynamic knowledge base in recent years. This paper provides a new approach for obtaining measures of terms semantic relatedness, which maps terms to relevant Wikipedia articles as the background information for analyzing. The proposed algorithm WLA focuses on the hyperlink structure and summary paragraph extracted from the topic pages to compute two terms similarity. Comparing with other similar techniques, the approach is less computationally intensive, because only the first paragraph is analyzed, not the entire text. Our method achieves good performance on the widely used test set WS-353.
维基百科中基于知识的术语语义关联计算
近年来,许多研究者已经认识到维基百科是一个巨大的动态知识库资源。本文提出了一种获取术语语义相关性度量的新方法,该方法将术语映射到相关的维基百科文章中作为背景信息进行分析。本文提出的WLA算法着重于从主题页面中提取的超链接结构和摘要段落来计算两个词的相似度。与其他类似的技术相比,这种方法的计算量更少,因为只分析第一段,而不是整个文本。该方法在广泛使用的WS-353测试集上取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信