Xiufeng Xie, Xinyu Zhang, Swarun Kumar, Erran L. Li
{"title":"piStream: Physical Layer Informed Adaptive Video Streaming over LTE","authors":"Xiufeng Xie, Xinyu Zhang, Swarun Kumar, Erran L. Li","doi":"10.1145/2789168.2790118","DOIUrl":null,"url":null,"abstract":"Adaptive HTTP video streaming over LTE has been gaining popularity due to LTE's high capacity. Quality of adaptive streaming depends highly on the accuracy of client's estimation of end-to-end network bandwidth, which is challenging due to LTE link dynamics. In this paper, we present piStream, that allows a client to efficiently monitor the LTE basestation's PHY-layer resource allocation, and then map such information to an estimation of available bandwidth. Given the PHY-informed bandwidth estimation, piStream uses a probabilistic algorithm to balance video quality and the risk of stalling, taking into account the burstiness of LTE downlink traffic loads. We conduct a real-time implementation of piStream on a software-radio tethered to an LTE smartphone. Comparison with state-of-the-art adaptive streaming protocols demonstrates that piStream can effectively utilize the LTE bandwidth, achieving high video quality with minimal stalling rate.","PeriodicalId":424497,"journal":{"name":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789168.2790118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135
Abstract
Adaptive HTTP video streaming over LTE has been gaining popularity due to LTE's high capacity. Quality of adaptive streaming depends highly on the accuracy of client's estimation of end-to-end network bandwidth, which is challenging due to LTE link dynamics. In this paper, we present piStream, that allows a client to efficiently monitor the LTE basestation's PHY-layer resource allocation, and then map such information to an estimation of available bandwidth. Given the PHY-informed bandwidth estimation, piStream uses a probabilistic algorithm to balance video quality and the risk of stalling, taking into account the burstiness of LTE downlink traffic loads. We conduct a real-time implementation of piStream on a software-radio tethered to an LTE smartphone. Comparison with state-of-the-art adaptive streaming protocols demonstrates that piStream can effectively utilize the LTE bandwidth, achieving high video quality with minimal stalling rate.