Extracting usage patterns from web server log

J. Monisha, P. Jeba, M. Bhuvaneswari, K. Muneeswaran
{"title":"Extracting usage patterns from web server log","authors":"J. Monisha, P. Jeba, M. Bhuvaneswari, K. Muneeswaran","doi":"10.1109/ICGHPC.2016.7508074","DOIUrl":null,"url":null,"abstract":"Websites are the primary medium of any organization to communicate to their customers. Navigational usability and accessibility of the website are crucial to gain competitive advantage. Understanding how the customer uses the website can provide insight into their behavior. Web server logs contain latent information about usage behavior of customers. User sessions are a sequence of pages accessed by users for a specific period. The sessions are reconstructed from the web server logs. Simulated Annealing technique is used to enhance the process of identifying sessions. Considering the non-deterministic browsing behavior, soft clustering methods are used for assigning membership value for each session to belong to a cluster. A modified form of Fuzzy C-Means is used for clustering. The framework involves access log preprocessing, user identification, session identification and Mountain density function (MDF)-based fuzzy clustering. The obtained clusters represent common navigational behavior among the users.","PeriodicalId":268630,"journal":{"name":"2016 2nd International Conference on Green High Performance Computing (ICGHPC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Green High Performance Computing (ICGHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGHPC.2016.7508074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Websites are the primary medium of any organization to communicate to their customers. Navigational usability and accessibility of the website are crucial to gain competitive advantage. Understanding how the customer uses the website can provide insight into their behavior. Web server logs contain latent information about usage behavior of customers. User sessions are a sequence of pages accessed by users for a specific period. The sessions are reconstructed from the web server logs. Simulated Annealing technique is used to enhance the process of identifying sessions. Considering the non-deterministic browsing behavior, soft clustering methods are used for assigning membership value for each session to belong to a cluster. A modified form of Fuzzy C-Means is used for clustering. The framework involves access log preprocessing, user identification, session identification and Mountain density function (MDF)-based fuzzy clustering. The obtained clusters represent common navigational behavior among the users.
从web服务器日志中提取使用模式
网站是任何组织与客户沟通的主要媒介。网站的导航可用性和可访问性对于获得竞争优势至关重要。了解客户如何使用网站可以洞察他们的行为。Web服务器日志包含有关客户使用行为的潜在信息。用户会话是用户在特定时间段内访问的一系列页面。会话是根据web服务器日志重建的。利用模拟退火技术增强了会话识别的过程。考虑到浏览行为的不确定性,采用软聚类方法为每个会话分配隶属于一个簇的成员值。一种改进形式的模糊c均值用于聚类。该框架包括访问日志预处理、用户识别、会话识别和基于Mountain密度函数(MDF)的模糊聚类。获得的集群表示用户之间的共同导航行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信