{"title":"Homotopy Quotients and Equivariant Cohomology","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.10","DOIUrl":null,"url":null,"abstract":"This chapter investigates two candidates for equivariant cohomology and explains why it settles on the Borel construction, also called Cartan's mixing construction. Let G be a topological group and M a left G-space. The Borel construction mixes the weakly contractible total space of a principal bundle with the G-space M to produce a homotopy quotient of M. Equivariant cohomology is the cohomology of the homotopy quotient. More generally, given a G-space M, Cartan's mixing construction turns a principal bundle with fiber G into a fiber bundle with fiber M. Cartan's mixing construction fits into the Cartan's mixing diagram, a powerful tool for dealing with equivariant cohomology.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter investigates two candidates for equivariant cohomology and explains why it settles on the Borel construction, also called Cartan's mixing construction. Let G be a topological group and M a left G-space. The Borel construction mixes the weakly contractible total space of a principal bundle with the G-space M to produce a homotopy quotient of M. Equivariant cohomology is the cohomology of the homotopy quotient. More generally, given a G-space M, Cartan's mixing construction turns a principal bundle with fiber G into a fiber bundle with fiber M. Cartan's mixing construction fits into the Cartan's mixing diagram, a powerful tool for dealing with equivariant cohomology.