Memory optimization for packet classification algorithms

J. Blaho, J. Korenek, V. Pus
{"title":"Memory optimization for packet classification algorithms","authors":"J. Blaho, J. Korenek, V. Pus","doi":"10.1145/1882486.1882524","DOIUrl":null,"url":null,"abstract":"We propose novel method how to reduce data structure size for the family of packet classification algorithms at the cost of additional pipelined processing with only small amount of logic resources. The reduction significantly decreases overhead given by the crossproduct nature of classification rules. Therefore the data structure can be compressed to 10% on average. As high compression ratio is achieved, fast on-chip memory can be used to store data structures and hardware architectures can process network traffic at significantly higher speed.","PeriodicalId":329300,"journal":{"name":"Symposium on Architectures for Networking and Communications Systems","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Architectures for Networking and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1882486.1882524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We propose novel method how to reduce data structure size for the family of packet classification algorithms at the cost of additional pipelined processing with only small amount of logic resources. The reduction significantly decreases overhead given by the crossproduct nature of classification rules. Therefore the data structure can be compressed to 10% on average. As high compression ratio is achieved, fast on-chip memory can be used to store data structures and hardware architectures can process network traffic at significantly higher speed.
分组分类算法的内存优化
我们提出了一种新颖的方法来减少数据包分类算法家族的数据结构大小,以额外的流水线处理为代价,只需要少量的逻辑资源。这种减少显著降低了分类规则的叉积特性所带来的开销。因此,数据结构可以平均压缩到10%。由于实现了高压缩比,可以使用快速片上存储器来存储数据结构,并且硬件架构可以以更高的速度处理网络流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信