Properties of triangulated and quotient categories arising from n-Calabi–Yau triples

F. Fedele
{"title":"Properties of triangulated and quotient\ncategories arising from n-Calabi–Yau triples","authors":"F. Fedele","doi":"10.2140/PJM.2021.310.1","DOIUrl":null,"url":null,"abstract":"Let $k$ be a field, $n\\geq 3$ an integer and $\\mathcal{T}$ a $k$-linear triangulated category with a triangulated subcategory $\\mathcal{T}^{fd}$ and a subcategory $\\mathcal{M}=\\text{add}(M)$ such that $(\\mathcal{T}, \\mathcal{T}^{fd}, \\mathcal{M})$ is an $n$-Calabi-Yau triple. For every integer $m$ and every object $X$ in $\\mathcal{T}$, there is a unique, up to isomorphism, truncation triangle of the form \n\\begin{align*} \nX^{\\leq m}\\rightarrow X\\rightarrow X^{\\geq m+1}\\rightarrow\\Sigma X^{\\leq m}, \n\\end{align*} with respect to the $t$-structure $((\\Sigma^{ -m}\\mathcal{M})^{\\perp_\\mathcal{T}})$. In this paper, we prove some properties of the triangulated categories $\\mathcal{T}$ and $\\mathcal{T}/\\mathcal{T}^{fd}$. Our first result gives a relation between the Hom-spaces in these categories, using limits and colimits. Our second result is a Gap Theorem in $\\mathcal{T}$, showing when the truncation triangles split. \nMoreover, we apply our two theorems to present an alternative proof to a result by Guo, originally stated in a more specific setup of dg $k$-algebras $A$ and subcategories of the derived category of dg $A$-modules. This proves that $\\mathcal{T}/\\mathcal{T}^{fd}$ is Hom-finite and $(n-1)$-Calabi-Yau, its object $M$ is $(n-1)$-cluster tilting and the endomorphism algebras of $M$ over $\\mathcal{T}$ and over $\\mathcal{T}/\\mathcal{T}^{fd}$ are isomorphic. Note that these properties make $\\mathcal{T}/\\mathcal{T}^{fd}$ a generalisation of the cluster category.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2021.310.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $k$ be a field, $n\geq 3$ an integer and $\mathcal{T}$ a $k$-linear triangulated category with a triangulated subcategory $\mathcal{T}^{fd}$ and a subcategory $\mathcal{M}=\text{add}(M)$ such that $(\mathcal{T}, \mathcal{T}^{fd}, \mathcal{M})$ is an $n$-Calabi-Yau triple. For every integer $m$ and every object $X$ in $\mathcal{T}$, there is a unique, up to isomorphism, truncation triangle of the form \begin{align*} X^{\leq m}\rightarrow X\rightarrow X^{\geq m+1}\rightarrow\Sigma X^{\leq m}, \end{align*} with respect to the $t$-structure $((\Sigma^{ -m}\mathcal{M})^{\perp_\mathcal{T}})$. In this paper, we prove some properties of the triangulated categories $\mathcal{T}$ and $\mathcal{T}/\mathcal{T}^{fd}$. Our first result gives a relation between the Hom-spaces in these categories, using limits and colimits. Our second result is a Gap Theorem in $\mathcal{T}$, showing when the truncation triangles split. Moreover, we apply our two theorems to present an alternative proof to a result by Guo, originally stated in a more specific setup of dg $k$-algebras $A$ and subcategories of the derived category of dg $A$-modules. This proves that $\mathcal{T}/\mathcal{T}^{fd}$ is Hom-finite and $(n-1)$-Calabi-Yau, its object $M$ is $(n-1)$-cluster tilting and the endomorphism algebras of $M$ over $\mathcal{T}$ and over $\mathcal{T}/\mathcal{T}^{fd}$ are isomorphic. Note that these properties make $\mathcal{T}/\mathcal{T}^{fd}$ a generalisation of the cluster category.
n-Calabi-Yau三元组中三角化和商类的性质
设$k$是一个字段,$n\geq 3$是一个整数,$\mathcal{T}$是一个$k$ -线性三角分类,带有一个三角分类子类别$\mathcal{T}^{fd}$和一个子类别$\mathcal{M}=\text{add}(M)$,使得$(\mathcal{T}, \mathcal{T}^{fd}, \mathcal{M})$是一个$n$ -Calabi-Yau三重。对于$\mathcal{T}$中的每个整数$m$和每个对象$X$,相对于$t$ -结构$((\Sigma^{ -m}\mathcal{M})^{\perp_\mathcal{T}})$,存在一个形式为\begin{align*} X^{\leq m}\rightarrow X\rightarrow X^{\geq m+1}\rightarrow\Sigma X^{\leq m}, \end{align*}的唯一的、直到同构的截断三角形。本文证明了三角分类$\mathcal{T}$和$\mathcal{T}/\mathcal{T}^{fd}$的一些性质。我们的第一个结果利用极限和极限给出了这些范畴中homn空间之间的关系。我们的第二个结果是$\mathcal{T}$中的间隙定理,它显示了截断三角形何时分裂。此外,我们应用我们的两个定理给出了郭的一个结果的另一种证明,该结果最初是在dg $k$ -代数$A$和dg $A$ -模的派生范畴的子范畴的更具体的设置中提出的。证明了$\mathcal{T}/\mathcal{T}^{fd}$是homi -finite和$(n-1)$ -Calabi-Yau,其对象$M$是$(n-1)$ -簇倾斜,$M$在$\mathcal{T}$和$\mathcal{T}/\mathcal{T}^{fd}$上的自同态代数是同构的。注意,这些属性使$\mathcal{T}/\mathcal{T}^{fd}$成为集群类别的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信