A Bottom-up Merging Algorithm for Chinese Unknown Word Extraction

Wei-Yun Ma, Keh-Jiann Chen
{"title":"A Bottom-up Merging Algorithm for Chinese Unknown Word Extraction","authors":"Wei-Yun Ma, Keh-Jiann Chen","doi":"10.3115/1119250.1119255","DOIUrl":null,"url":null,"abstract":"Statistical methods for extracting Chinese unknown words usually suffer a problem that superfluous character strings with strong statistical associations are extracted as well. To solve this problem, this paper proposes to use a set of general morphological rules to broaden the coverage and on the other hand, the rules are appended with different linguistic and statistical constraints to increase the precision of the representation. To disambiguate rule applications and reduce the complexity of the rule matching, a bottom-up merging algorithm for extraction is proposed, which merges possible morphemes recursively by consulting above the general rules and dynamically decides which rule should be applied first according to the priorities of the rules. Effects of different priority strategies are compared in our experiment, and experimental results show that the performance of proposed method is very promising.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Statistical methods for extracting Chinese unknown words usually suffer a problem that superfluous character strings with strong statistical associations are extracted as well. To solve this problem, this paper proposes to use a set of general morphological rules to broaden the coverage and on the other hand, the rules are appended with different linguistic and statistical constraints to increase the precision of the representation. To disambiguate rule applications and reduce the complexity of the rule matching, a bottom-up merging algorithm for extraction is proposed, which merges possible morphemes recursively by consulting above the general rules and dynamically decides which rule should be applied first according to the priorities of the rules. Effects of different priority strategies are compared in our experiment, and experimental results show that the performance of proposed method is very promising.
中文未知词提取的自底向上合并算法
用统计方法提取汉语未识别词时,往往会提取出具有强统计关联的多余字符串。为了解决这一问题,本文提出使用一套通用的形态学规则来扩大覆盖范围,另一方面,在这些规则中附加不同的语言和统计约束,以提高表征的精度。为了消除规则应用的歧义,降低规则匹配的复杂性,提出了一种自下而上的词素提取合并算法,该算法通过对一般规则的查询,递归地合并可能的词素,并根据规则的优先级动态决定优先应用哪条规则。在实验中比较了不同优先级策略的效果,实验结果表明,本文提出的方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信