Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides

A. Badahmane, A. Bentbib, H. Sadok
{"title":"Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides","authors":"A. Badahmane, A. Bentbib, H. Sadok","doi":"10.1553/etna_vol51s495","DOIUrl":null,"url":null,"abstract":"In the present paper, we propose a preconditioned global approach as a new strategy to solve linear systems with several right-hand sides coming from saddle point problems. The preconditioner is obtained by replacing a (2,2)-block in the original saddle-point matrix A by another well-chosen block. We apply the global GMRES method to solve this new problem with several right-hand sides and give some convergence results. Moreover, we analyze the eigenvalue distribution and the eigenvectors of the proposed preconditioner when the first block is positive definite. We also compare different preconditioned global Krylov subspace algorithms (CG, MINRES, FGMRES, GMRES) with preconditioned block (CG, GMRES) algorithms. Numerical results show that our preconditioned global GMRES method is competitive with other preconditioned global Krylov subspace and preconditioned block Krylov subspace methods for solving saddle point problems with several right-hand sides.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol51s495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present paper, we propose a preconditioned global approach as a new strategy to solve linear systems with several right-hand sides coming from saddle point problems. The preconditioner is obtained by replacing a (2,2)-block in the original saddle-point matrix A by another well-chosen block. We apply the global GMRES method to solve this new problem with several right-hand sides and give some convergence results. Moreover, we analyze the eigenvalue distribution and the eigenvectors of the proposed preconditioner when the first block is positive definite. We also compare different preconditioned global Krylov subspace algorithms (CG, MINRES, FGMRES, GMRES) with preconditioned block (CG, GMRES) algorithms. Numerical results show that our preconditioned global GMRES method is competitive with other preconditioned global Krylov subspace and preconditioned block Krylov subspace methods for solving saddle point problems with several right-hand sides.
鞍点问题的预处理全局Krylov子空间解法
在本文中,我们提出了一种预条件全局方法作为求解具有多个右侧来自鞍点问题的线性系统的新策略。预条件是将原鞍点矩阵a中的(2,2)块替换为另一个选定的块。我们应用全局GMRES方法求解了这个有多个右侧的新问题,并给出了一些收敛结果。此外,我们还分析了当第一个块为正定时所提出的预条件的特征值分布和特征向量。我们还比较了不同的预处理全局Krylov子空间算法(CG, MINRES, FGMRES, GMRES)与预处理块(CG, GMRES)算法。数值结果表明,该方法在求解多右手边鞍点问题时,优于其他的预处理全局Krylov子空间方法和预处理块Krylov子空间方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信