Elementary proofs of Kempe universality

S. Power
{"title":"Elementary proofs of Kempe universality","authors":"S. Power","doi":"10.3318/PRIA.2017.117.04","DOIUrl":null,"url":null,"abstract":"An elementary proof is given to show that a parametrised algebraic curve in the plane may be traced out, in the sense of A. B. Kempe, by a finite pinned linkage. Additionally it is shown that any parametrised continuous curve \\gamma: [0,1] to R^2 may be traced out by an infinite linkage where the valencies of the joints is uniformly bounded. We also discuss related Kempe universality theorems and give a novel correction of Kempe's original argument.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2017.117.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An elementary proof is given to show that a parametrised algebraic curve in the plane may be traced out, in the sense of A. B. Kempe, by a finite pinned linkage. Additionally it is shown that any parametrised continuous curve \gamma: [0,1] to R^2 may be traced out by an infinite linkage where the valencies of the joints is uniformly bounded. We also discuss related Kempe universality theorems and give a novel correction of Kempe's original argument.
肯普普适性的初等证明
给出了一个初等证明,证明了在a . B. Kempe意义下,平面上的参数化代数曲线可以用有限钉住连杆来描出。此外,还证明了任意参数化连续曲线\gamma:[0,1]到R^2都可以被一个无限连杆跟踪,其中关节的价是一致有界的。我们还讨论了相关的肯普普适性定理,并对肯普的原论点进行了新的修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信