A modified synapse model for neuromorphic circuits

Amirhossein Kazemi, A. Ahmadi, S. Alirezaee, M. Ahmadi
{"title":"A modified synapse model for neuromorphic circuits","authors":"Amirhossein Kazemi, A. Ahmadi, S. Alirezaee, M. Ahmadi","doi":"10.1109/LASCAS.2016.7451011","DOIUrl":null,"url":null,"abstract":"Nowadays, biological neural system modeling is extending to higher levels which have made it feasible to accomplish a better understanding of the brain behavior. In this regard, neurons, have been center of attention in terms of analysis and modeling. Synapses, on the other hand, are one of the most critical components in the central nervous system, which provide basis for the communication between neurons and are known as a main contributor to the system neuroplasticity. In this paper, we present a modified model for synaptic transmission (NMDA receptor) which is suitable for efficient simulations and also circuit implementations. To test integrity and validation of the simplified model, simulations results are presented. This model can be used for digital and/or analog implementations in large-scale biological neural system simulations. This approach provides advantage of higher speed and lower implementation costs yet demonstrating similar dynamic behaviors.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, biological neural system modeling is extending to higher levels which have made it feasible to accomplish a better understanding of the brain behavior. In this regard, neurons, have been center of attention in terms of analysis and modeling. Synapses, on the other hand, are one of the most critical components in the central nervous system, which provide basis for the communication between neurons and are known as a main contributor to the system neuroplasticity. In this paper, we present a modified model for synaptic transmission (NMDA receptor) which is suitable for efficient simulations and also circuit implementations. To test integrity and validation of the simplified model, simulations results are presented. This model can be used for digital and/or analog implementations in large-scale biological neural system simulations. This approach provides advantage of higher speed and lower implementation costs yet demonstrating similar dynamic behaviors.
神经形态回路的改进突触模型
如今,生物神经系统建模正在向更高的层次扩展,这使得更好地理解大脑行为成为可能。在这方面,神经元在分析和建模方面一直是关注的中心。另一方面,突触是中枢神经系统中最重要的组成部分之一,它为神经元之间的交流提供基础,被认为是系统神经可塑性的主要贡献者。在本文中,我们提出了一个改进的突触传递模型(NMDA受体),该模型适用于有效的模拟和电路实现。为了验证简化模型的完整性和有效性,给出了仿真结果。该模型可用于大规模生物神经系统仿真的数字和/或模拟实现。这种方法提供了更快的速度和更低的实现成本的优势,同时展示了类似的动态行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信