On the Accuracy of Network Localization and Synchronization

Zhenyu Liu, Florian Meyer, M. Win
{"title":"On the Accuracy of Network Localization and Synchronization","authors":"Zhenyu Liu, Florian Meyer, M. Win","doi":"10.1109/LATINCOM.2018.8613200","DOIUrl":null,"url":null,"abstract":"Network localization and synchronization (NLS) is a paradigm that considers joint inference of positions and clock parameters in a network consisting of completely asynchronous nodes. NLS has the potential to achieve significant performance gains in terms of localization and synchronization accuracy. In this paper, we derive fundamental performance limits of NLS by considering a problem formulation in the non-Bayesian inference framework, in which the waveforms received by different nodes in the network are considered as measurements. We perform equivalent Fisher information analysis to obtain bounds on the accuracy of NLS, and our results reveal how physical parameters and signal departure times affect the inference performance. The analytical results are verified by simulations based on a realistic channel model that takes spatial consistency into consideration.","PeriodicalId":332646,"journal":{"name":"2018 IEEE 10th Latin-American Conference on Communications (LATINCOM)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM.2018.8613200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network localization and synchronization (NLS) is a paradigm that considers joint inference of positions and clock parameters in a network consisting of completely asynchronous nodes. NLS has the potential to achieve significant performance gains in terms of localization and synchronization accuracy. In this paper, we derive fundamental performance limits of NLS by considering a problem formulation in the non-Bayesian inference framework, in which the waveforms received by different nodes in the network are considered as measurements. We perform equivalent Fisher information analysis to obtain bounds on the accuracy of NLS, and our results reveal how physical parameters and signal departure times affect the inference performance. The analytical results are verified by simulations based on a realistic channel model that takes spatial consistency into consideration.
论网络定位与同步的准确性
网络定位与同步(NLS)是一种考虑由完全异步节点组成的网络中位置和时钟参数联合推理的范式。NLS有潜力在定位和同步精度方面实现显著的性能提升。在本文中,我们通过考虑非贝叶斯推理框架中的问题表述,推导出NLS的基本性能限制,其中网络中不同节点接收到的波形被视为测量值。我们执行等效的Fisher信息分析来获得NLS精度的界限,我们的结果揭示了物理参数和信号偏离时间如何影响推理性能。基于考虑空间一致性的通道模型的仿真验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信