A neural-network-based approach for fault classification and faulted phase selection

W. Al-hassawi, N.H. Abbasi, M. Mansour
{"title":"A neural-network-based approach for fault classification and faulted phase selection","authors":"W. Al-hassawi, N.H. Abbasi, M. Mansour","doi":"10.1109/CCECE.1996.548117","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a new approach for fault type classification and faulted phase selection based on artificial neural networks (ANN) to be used for power transmission line protection. The proposed approach is based on a 2-level hierarchical neural network structure. Compared to other architectures, this structure would have a high learning ability and accordingly higher recall accuracy. To reach the corresponding decision, the normalized changes from prefault condition in the instantaneous phase voltages and currents at the relaying point are used. This would lead to an inherent adaptive feature of the approach.","PeriodicalId":269440,"journal":{"name":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1996.548117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper is concerned with a new approach for fault type classification and faulted phase selection based on artificial neural networks (ANN) to be used for power transmission line protection. The proposed approach is based on a 2-level hierarchical neural network structure. Compared to other architectures, this structure would have a high learning ability and accordingly higher recall accuracy. To reach the corresponding decision, the normalized changes from prefault condition in the instantaneous phase voltages and currents at the relaying point are used. This would lead to an inherent adaptive feature of the approach.
基于神经网络的故障分类和故障相位选择方法
本文研究了一种基于人工神经网络的故障类型分类和故障相位选择的新方法,并将其应用于输电线路保护中。该方法基于二层层次神经网络结构。与其他结构相比,该结构具有较高的学习能力和更高的回忆准确率。为了得到相应的判定,采用了从故障前状态到继电点瞬时相电压和电流的归一化变化。这将导致该方法具有固有的适应性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信