{"title":"Deep Quaternion Pose Proposals for 6D Object Pose Tracking","authors":"Mateusz Majcher, B. Kwolek","doi":"10.1109/ICCVW54120.2021.00032","DOIUrl":null,"url":null,"abstract":"In this work we study quaternion pose distributions for tracking in RGB image sequences the 6D pose of an object selected from a set of objects, for which common models were trained in advance. We propose an unit quaternion representation of the rotational state space for a particle filter, which is then integrated with the particle swarm optimization to shift samples toward local maximas. Owing to k-means++ we better maintain multimodal probability distributions. We train convolutional neural networks to estimate the 2D positions of fiducial points and then to determine PnP-based object pose hypothesis. A CNN is utilized to estimate the positions of fiducial points in order to calculate PnP-based object pose hypothesis. A common Siamese neural network for all objects, which is trained on keypoints from current and previous frame is employed to guide the particles towards predicted pose of the object. Such a key-point based pose hypothesis is injected into the probability distribution that is recursively updated in a Bayesian framework. The 6D object pose tracker is evaluated on Nvidia Jetson AGX Xavier both on synthetic and real sequences of images acquired from a calibrated RGB camera.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work we study quaternion pose distributions for tracking in RGB image sequences the 6D pose of an object selected from a set of objects, for which common models were trained in advance. We propose an unit quaternion representation of the rotational state space for a particle filter, which is then integrated with the particle swarm optimization to shift samples toward local maximas. Owing to k-means++ we better maintain multimodal probability distributions. We train convolutional neural networks to estimate the 2D positions of fiducial points and then to determine PnP-based object pose hypothesis. A CNN is utilized to estimate the positions of fiducial points in order to calculate PnP-based object pose hypothesis. A common Siamese neural network for all objects, which is trained on keypoints from current and previous frame is employed to guide the particles towards predicted pose of the object. Such a key-point based pose hypothesis is injected into the probability distribution that is recursively updated in a Bayesian framework. The 6D object pose tracker is evaluated on Nvidia Jetson AGX Xavier both on synthetic and real sequences of images acquired from a calibrated RGB camera.