Defect Length Prediction of Aluminum Alloy Sheet by Using Differential Evolution-Support Vector Regression (DE-SVR)

Y. Wu, Xiaoqin Gao, Hong-na Zhu
{"title":"Defect Length Prediction of Aluminum Alloy Sheet by Using Differential Evolution-Support Vector Regression (DE-SVR)","authors":"Y. Wu, Xiaoqin Gao, Hong-na Zhu","doi":"10.1109/fendt50467.2020.9337552","DOIUrl":null,"url":null,"abstract":"Aluminum alloy sheet has been widely applied in transport manufacturing industry due to its good mechanical properties. However, aluminum alloy sheet can inevitably generate defects in the process of processing and forming. In this paper, through the Support Vector Regression (SVR) model optimized by Differential Evolution (DE) algorithm, the collected Lamb wave signal in aluminum alloy sheet is analyzed and processed to detect the defect length in aluminum alloy sheet. The error penalty parameter $C$ and kernel function $g$ of SVR can be optimized constantly by using the selection, crossover, mutation operators and greedy selection strategies of DE algorithm. The feature matrix of Lamb wave signal is extracted and introduced into Particle Swarm Optimization-Support Vector Regression (PSO-SVR), Genetic Algorithm-Support Vector Regression (GA-SVR) and DE-SVR to compare and analyze the defect length error evaluation indexes. The results show that DE-SVR can greatly improve the speed and accuracy of defect length prediction of aluminum alloy sheet.","PeriodicalId":302672,"journal":{"name":"2020 IEEE Far East NDT New Technology & Application Forum (FENDT)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Far East NDT New Technology & Application Forum (FENDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fendt50467.2020.9337552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum alloy sheet has been widely applied in transport manufacturing industry due to its good mechanical properties. However, aluminum alloy sheet can inevitably generate defects in the process of processing and forming. In this paper, through the Support Vector Regression (SVR) model optimized by Differential Evolution (DE) algorithm, the collected Lamb wave signal in aluminum alloy sheet is analyzed and processed to detect the defect length in aluminum alloy sheet. The error penalty parameter $C$ and kernel function $g$ of SVR can be optimized constantly by using the selection, crossover, mutation operators and greedy selection strategies of DE algorithm. The feature matrix of Lamb wave signal is extracted and introduced into Particle Swarm Optimization-Support Vector Regression (PSO-SVR), Genetic Algorithm-Support Vector Regression (GA-SVR) and DE-SVR to compare and analyze the defect length error evaluation indexes. The results show that DE-SVR can greatly improve the speed and accuracy of defect length prediction of aluminum alloy sheet.
基于差分进化-支持向量回归(DE-SVR)的铝合金板材缺陷长度预测
铝合金板材由于其良好的力学性能,在交通运输制造业中得到了广泛的应用。然而,铝合金板材在加工成形过程中不可避免地会产生缺陷。本文通过差分进化(DE)算法优化的支持向量回归(SVR)模型,对采集到的铝合金薄板Lamb波信号进行分析处理,检测铝合金薄板缺陷长度。利用DE算法的选择算子、交叉算子、变异算子和贪婪选择策略,可以不断优化SVR的误差惩罚参数$C$和核函数$g$。提取Lamb波信号的特征矩阵,并将其引入粒子群优化-支持向量回归(PSO-SVR)、遗传算法-支持向量回归(GA-SVR)和DE-SVR中,对缺陷长度误差评价指标进行比较分析。结果表明,DE-SVR可以大大提高铝合金薄板缺陷长度预测的速度和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信