Some Bayesian biclustering methods: Modeling and inference

A. Chakraborty, S. Vardeman
{"title":"Some Bayesian biclustering methods: Modeling and inference","authors":"A. Chakraborty, S. Vardeman","doi":"10.1002/sam.11584","DOIUrl":null,"url":null,"abstract":"Standard one‐way clustering methods form homogeneous groups in a set of objects. Biclustering (or, two‐way clustering) methods simultaneously cluster rows and columns of a rectangular data array in such a way that responses are homogeneous for all row‐cluster by column‐cluster cells. We propose a Bayes methodology for biclustering and corresponding MCMC algorithms. Our method not only identifies homogeneous biclusters, but also provides posterior probabilities that particular instances or features are clustered together. We further extend our proposal to address the biclustering problem under the commonly occurring situation of incomplete datasets. In addition to identifying homogeneous sets of rows and sets of columns, as in the complete data scenario, our approach also generates plausible predictions for missing/unobserved entries in the rectangular data array. Performances of our methodology are illustrated through simulation studies and applications to real datasets.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Standard one‐way clustering methods form homogeneous groups in a set of objects. Biclustering (or, two‐way clustering) methods simultaneously cluster rows and columns of a rectangular data array in such a way that responses are homogeneous for all row‐cluster by column‐cluster cells. We propose a Bayes methodology for biclustering and corresponding MCMC algorithms. Our method not only identifies homogeneous biclusters, but also provides posterior probabilities that particular instances or features are clustered together. We further extend our proposal to address the biclustering problem under the commonly occurring situation of incomplete datasets. In addition to identifying homogeneous sets of rows and sets of columns, as in the complete data scenario, our approach also generates plausible predictions for missing/unobserved entries in the rectangular data array. Performances of our methodology are illustrated through simulation studies and applications to real datasets.
一些贝叶斯双聚类方法:建模和推理
标准的单向聚类方法在一组对象中形成同质组。双聚类(或双向聚类)方法同时对矩形数据数组的行和列进行聚类,使所有行-列-簇的响应都是均匀的。我们提出了一种贝叶斯双聚类方法和相应的MCMC算法。我们的方法不仅识别同质双聚类,而且还提供了特定实例或特征聚在一起的后验概率。我们进一步扩展了我们的建议,以解决在数据集不完整的情况下常见的双聚类问题。除了像在完整数据场景中那样识别同构的行集和列集之外,我们的方法还为矩形数据数组中缺失/未观察到的条目生成可信的预测。通过模拟研究和实际数据集的应用,说明了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信