Ivan Hlača, Dragan Ribarić, Leo Škec, Maedeh Ranjbar Zefreh
{"title":"Modelling delamination of a DCB test by using non-linear truss interface elements and plate elements with assumed shear strain","authors":"Ivan Hlača, Dragan Ribarić, Leo Škec, Maedeh Ranjbar Zefreh","doi":"10.4995/yic2021.2021.12587","DOIUrl":null,"url":null,"abstract":"Fracture resistance of structural adhesive joints is key for their application in the industry. Mode-I adhesive joint delamination is the most severe type of fracture and the possibility of this outcome should be avoided whenever possible. In this work we are investigating mode-I delamination of plate-like specimens, where the width is comparable to the length. In such cases anticlastic bending of the plates takes place on the debonded part and the crack front is a curve rather than a straight line. We model the interface by means of discrete non-linear truss elements with embedded exponential traction-separation law [1]. Such choice is justified because in this test, only pure mode-I (opening) displacements occur at the interface, which in our case will cause axial elongation of the truss elements. The plates are modelled using 4-node plate finite elements derived by the assumed shear strain approach that pass the general constant-bending patch test [2]. Cohesive-zone interface parameter identification is performed by a direct method (J-integral) [3] and by virtual experiments regression. Numerical tests have been performed and the exponential cohesive-zone interface model compared against the bi-linear in terms of precision, robustness and computing time. The results confirm the experimentally observed behaviour with anticlastic bending of the arms and the curved crack front.","PeriodicalId":406819,"journal":{"name":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/yic2021.2021.12587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fracture resistance of structural adhesive joints is key for their application in the industry. Mode-I adhesive joint delamination is the most severe type of fracture and the possibility of this outcome should be avoided whenever possible. In this work we are investigating mode-I delamination of plate-like specimens, where the width is comparable to the length. In such cases anticlastic bending of the plates takes place on the debonded part and the crack front is a curve rather than a straight line. We model the interface by means of discrete non-linear truss elements with embedded exponential traction-separation law [1]. Such choice is justified because in this test, only pure mode-I (opening) displacements occur at the interface, which in our case will cause axial elongation of the truss elements. The plates are modelled using 4-node plate finite elements derived by the assumed shear strain approach that pass the general constant-bending patch test [2]. Cohesive-zone interface parameter identification is performed by a direct method (J-integral) [3] and by virtual experiments regression. Numerical tests have been performed and the exponential cohesive-zone interface model compared against the bi-linear in terms of precision, robustness and computing time. The results confirm the experimentally observed behaviour with anticlastic bending of the arms and the curved crack front.