Approximating Approximate Pattern Matching

J. Studeny, P. Uznański
{"title":"Approximating Approximate Pattern Matching","authors":"J. Studeny, P. Uznański","doi":"10.4230/LIPIcs.CPM.2019.15","DOIUrl":null,"url":null,"abstract":"Given a text $T$ of length $n$ and a pattern $P$ of length $m$, the approximate pattern matching problem asks for computation of a particular \\emph{distance} function between $P$ and every $m$-substring of $T$. We consider a $(1\\pm\\varepsilon)$ multiplicative approximation variant of this problem, for $\\ell_p$ distance function. In this paper, we describe two $(1+\\varepsilon)$-approximate algorithms with a runtime of $\\widetilde{O}(\\frac{n}{\\varepsilon})$ for all (constant) non-negative values of $p$. For constant $p \\ge 1$ we show a deterministic $(1+\\varepsilon)$-approximation algorithm. Previously, such run time was known only for the case of $\\ell_1$ distance, by Gawrychowski and Uznanski [ICALP 2018] and only with a randomized algorithm. For constant $0 \\le p \\le 1$ we show a randomized algorithm for the $\\ell_p$, thereby providing a smooth tradeoff between algorithms of Kopelowitz and Porat [FOCS~2015, SOSA~2018] for Hamming distance (case of $p=0$) and of Gawrychowski and Uznanski for $\\ell_1$ distance.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2019.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Given a text $T$ of length $n$ and a pattern $P$ of length $m$, the approximate pattern matching problem asks for computation of a particular \emph{distance} function between $P$ and every $m$-substring of $T$. We consider a $(1\pm\varepsilon)$ multiplicative approximation variant of this problem, for $\ell_p$ distance function. In this paper, we describe two $(1+\varepsilon)$-approximate algorithms with a runtime of $\widetilde{O}(\frac{n}{\varepsilon})$ for all (constant) non-negative values of $p$. For constant $p \ge 1$ we show a deterministic $(1+\varepsilon)$-approximation algorithm. Previously, such run time was known only for the case of $\ell_1$ distance, by Gawrychowski and Uznanski [ICALP 2018] and only with a randomized algorithm. For constant $0 \le p \le 1$ we show a randomized algorithm for the $\ell_p$, thereby providing a smooth tradeoff between algorithms of Kopelowitz and Porat [FOCS~2015, SOSA~2018] for Hamming distance (case of $p=0$) and of Gawrychowski and Uznanski for $\ell_1$ distance.
近似近似模式匹配
给定长度为$n$的文本$T$和长度为$m$的模式$P$,近似模式匹配问题要求计算$P$和$T$的每个$m$ -子串之间的特定\emph{距离}函数。对于$\ell_p$距离函数,我们考虑这个问题的$(1\pm\varepsilon)$乘法近似变体。在本文中,我们描述了两个$(1+\varepsilon)$ -近似算法,对$p$的所有(常数)非负值的运行时间为$\widetilde{O}(\frac{n}{\varepsilon})$。对于常数$p \ge 1$,我们给出了一个确定性的$(1+\varepsilon)$ -近似算法。在此之前,Gawrychowski和Uznanski [ICALP 2018]仅在$\ell_1$距离的情况下才知道这样的运行时间,并且只使用随机算法。对于常数$0 \le p \le 1$,我们展示了$\ell_p$的随机算法,从而在Kopelowitz和Porat [FOCS 2015, SOSA 2018]的Hamming距离算法($p=0$的情况)和Gawrychowski和Uznanski的$\ell_1$距离算法之间提供了平滑的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信