Automatic Ranking of Information Retrieval Systems

Maram Hasanain
{"title":"Automatic Ranking of Information Retrieval Systems","authors":"Maram Hasanain","doi":"10.1145/3159652.3170458","DOIUrl":null,"url":null,"abstract":"Typical information retrieval system evaluation requires expensive manually-collected relevance judgments of documents, which are used to rank retrieval systems. Due to the high cost associated with collecting relevance judgments and the ever-growing scale of data to be searched in practice, ranking of retrieval systems using manual judgments is becoming less feasible. Methods to automatically rank systems in absence of judgments have been proposed to tackle this challenge. However, current techniques are still far from reaching the ranking achieved using manual judgments. I propose to advance research on automatic system ranking using supervised and unsupervised techniques.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3170458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Typical information retrieval system evaluation requires expensive manually-collected relevance judgments of documents, which are used to rank retrieval systems. Due to the high cost associated with collecting relevance judgments and the ever-growing scale of data to be searched in practice, ranking of retrieval systems using manual judgments is becoming less feasible. Methods to automatically rank systems in absence of judgments have been proposed to tackle this challenge. However, current techniques are still far from reaching the ranking achieved using manual judgments. I propose to advance research on automatic system ranking using supervised and unsupervised techniques.
信息检索系统的自动排序
典型的信息检索系统评估需要人工收集昂贵的文档相关性判断,这些判断用于对检索系统进行排序。由于收集相关判断的高成本和在实践中需要搜索的数据规模不断增长,使用人工判断的检索系统排序变得越来越不可行。为了应对这一挑战,已经提出了在没有判断的情况下对系统进行自动排序的方法。然而,目前的技术还远远不能达到人工判断所达到的排名。我建议使用监督和非监督技术来推进系统自动排序的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信