Median burg robust spectral estimation for inhomogeneous and stationary segments

F. Barbaresco, Alexis Decurninge
{"title":"Median burg robust spectral estimation for inhomogeneous and stationary segments","authors":"F. Barbaresco, Alexis Decurninge","doi":"10.1109/SAM.2016.7569662","DOIUrl":null,"url":null,"abstract":"In order to estimate parameters of Gaussian autoregressive processes, Burg method is often used in case of stationarity for its efficiency when few samples are available. We are interested in the case when multiple inhomogeneous (not necessarily Gaussian) segments of time series are available. We then study robust modification of Burg algorithms, especially based on Frechet medians defined for the Euclidean or the Poincare metric, to estimate the parameters of autoregressive processes in presence of outliers and/or contaminating distributions. Moreover, we will show that the introduced estimators are robust with respect to the power distribution of the time series. The considered modelization is motivated by radar applications, the performances of our methods will then be compared to the very popular Fixed Point and OS-CFAR estimators through radar simulated scenarios.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to estimate parameters of Gaussian autoregressive processes, Burg method is often used in case of stationarity for its efficiency when few samples are available. We are interested in the case when multiple inhomogeneous (not necessarily Gaussian) segments of time series are available. We then study robust modification of Burg algorithms, especially based on Frechet medians defined for the Euclidean or the Poincare metric, to estimate the parameters of autoregressive processes in presence of outliers and/or contaminating distributions. Moreover, we will show that the introduced estimators are robust with respect to the power distribution of the time series. The considered modelization is motivated by radar applications, the performances of our methods will then be compared to the very popular Fixed Point and OS-CFAR estimators through radar simulated scenarios.
非均匀和平稳段的中值burg鲁棒谱估计
为了估计高斯自回归过程的参数,通常在平稳情况下使用Burg方法,因为它在样本少的情况下效率高。我们感兴趣的是当多个非齐次(不一定是高斯)的时间序列片段可用的情况。然后,我们研究了Burg算法的鲁棒修正,特别是基于为欧几里得或庞加莱度量定义的Frechet中位数,以估计存在异常值和/或污染分布的自回归过程的参数。此外,我们将证明所引入的估计量相对于时间序列的功率分布是稳健的。考虑的建模是由雷达应用驱动的,然后通过雷达模拟场景将我们的方法的性能与非常流行的定点和OS-CFAR估计器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信