Devising High-Performing Random Spreading Code Sequences Using a Multi-Objective Genetic Algorithm

T. Mina, G. Gao
{"title":"Devising High-Performing Random Spreading Code Sequences Using a Multi-Objective Genetic Algorithm","authors":"T. Mina, G. Gao","doi":"10.33012/2019.17044","DOIUrl":null,"url":null,"abstract":"Reinvigorating the Navigation Technology Satellite (NTS) experimentation platform from its previous initiative in 1977, the United States Air Force (USAF) has expressed recent interest to enhance PNT resiliency and performance, while seeking to explore modificaiton to all layers of the GPS signal. For satellite navigation, developing spreading codes with reduced correlation sidelobes would correspondingly reduce inter-channel interference between the simultaneously broadcast satellite signals. Utilizing low-correlation spreading codes would enable GPS to provide improved navigation performance as well as incorporate a greater number of navigation signals, which further improves redundancy and accuracy. In this work, we develop a multi-objective, genetic algorithm-based architecture to devise high-quality code families with low mean, circular non-central auto-correlation and cross-correlation properties. Our search algorithm explores the multi-objective cost function space and seeks to progress and expand the local Pareto-optimal front of solutions. We demonstrate that our algorithm devises high-quality families of spreading code sequences which achieve low mean non-central auto-correlation and cross-correlation values, out-performing well-chosen families of equal-length Gold codes and Weil codes.","PeriodicalId":381025,"journal":{"name":"Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2019.17044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reinvigorating the Navigation Technology Satellite (NTS) experimentation platform from its previous initiative in 1977, the United States Air Force (USAF) has expressed recent interest to enhance PNT resiliency and performance, while seeking to explore modificaiton to all layers of the GPS signal. For satellite navigation, developing spreading codes with reduced correlation sidelobes would correspondingly reduce inter-channel interference between the simultaneously broadcast satellite signals. Utilizing low-correlation spreading codes would enable GPS to provide improved navigation performance as well as incorporate a greater number of navigation signals, which further improves redundancy and accuracy. In this work, we develop a multi-objective, genetic algorithm-based architecture to devise high-quality code families with low mean, circular non-central auto-correlation and cross-correlation properties. Our search algorithm explores the multi-objective cost function space and seeks to progress and expand the local Pareto-optimal front of solutions. We demonstrate that our algorithm devises high-quality families of spreading code sequences which achieve low mean non-central auto-correlation and cross-correlation values, out-performing well-chosen families of equal-length Gold codes and Weil codes.
利用多目标遗传算法设计高性能随机扩展码序列
重新激活导航技术卫星(NTS)实验平台,美国空军(USAF)最近表示有兴趣增强PNT的弹性和性能,同时寻求对GPS信号所有层的修改。对于卫星导航来说,开发相关旁瓣降低的扩频码可以相应减少同步广播卫星信号之间的信道间干扰。利用低相关扩频码将使GPS提供更好的导航性能,并纳入更多的导航信号,从而进一步提高冗余度和精度。在这项工作中,我们开发了一个多目标、基于遗传算法的架构,以设计具有低均值、圆形非中心自相关和互相关特性的高质量代码族。我们的搜索算法探索多目标代价函数空间,并寻求进步和扩展局部pareto最优解的前沿。我们证明了我们的算法设计了高质量的扩展码序列族,它们实现了低平均非中心自相关和相互相关值,优于精心选择的等长Gold码和Weil码族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信