Monocular Camera Based Real-Time Dense Mapping Using Generative Adversarial Network

Xin Yang, Jinyu Chen, Zhiwei Wang, Qiaozhe Zhang, Wenyu Liu, Chunyuan Liao, K. Cheng
{"title":"Monocular Camera Based Real-Time Dense Mapping Using Generative Adversarial Network","authors":"Xin Yang, Jinyu Chen, Zhiwei Wang, Qiaozhe Zhang, Wenyu Liu, Chunyuan Liao, K. Cheng","doi":"10.1145/3240508.3240564","DOIUrl":null,"url":null,"abstract":"Monocular simultaneous localization and mapping (SLAM) is a key enabling technique for many computer vision and robotics applications. However, existing methods either can obtain only sparse or semi-dense maps in highly-textured image areas or fail to achieve a satisfactory reconstruction accuracy. In this paper, we present a new method based on a generative adversarial network,named DM-GAN, for real-time dense mapping based on a monocular camera. Specifcally, our depth generator network takes a semidense map obtained from motion stereo matching as a guidance to supervise dense depth prediction of a single RGB image. The depth generator is trained based on a combination of two loss functions, i.e. an adversarial loss for enforcing the generated depth maps to reside on the manifold of the true depth maps and a pixel-wise mean square error (MSE) for ensuring the correct absolute depth values. Extensive experiments on three public datasets demonstrate that our DM-GAN signifcantly outperforms the state-of-the-art methods in terms of greater reconstruction accuracy and higher depth completeness.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Monocular simultaneous localization and mapping (SLAM) is a key enabling technique for many computer vision and robotics applications. However, existing methods either can obtain only sparse or semi-dense maps in highly-textured image areas or fail to achieve a satisfactory reconstruction accuracy. In this paper, we present a new method based on a generative adversarial network,named DM-GAN, for real-time dense mapping based on a monocular camera. Specifcally, our depth generator network takes a semidense map obtained from motion stereo matching as a guidance to supervise dense depth prediction of a single RGB image. The depth generator is trained based on a combination of two loss functions, i.e. an adversarial loss for enforcing the generated depth maps to reside on the manifold of the true depth maps and a pixel-wise mean square error (MSE) for ensuring the correct absolute depth values. Extensive experiments on three public datasets demonstrate that our DM-GAN signifcantly outperforms the state-of-the-art methods in terms of greater reconstruction accuracy and higher depth completeness.
基于生成对抗网络的单目摄像机实时密集映射
单目同步定位与制图(SLAM)是许多计算机视觉和机器人应用的关键实现技术。然而,现有的方法要么只能在高度纹理化的图像区域获得稀疏或半密集的地图,要么无法达到令人满意的重建精度。在本文中,我们提出了一种基于生成对抗网络的新方法,称为DM-GAN,用于基于单目摄像机的实时密集映射。具体来说,我们的深度生成器网络以运动立体匹配获得的半密集地图作为指导,监督单个RGB图像的密集深度预测。深度生成器是基于两个损失函数的组合进行训练的,即对抗损失用于强制生成的深度图驻留在真实深度图的流形上,而像素均方误差(MSE)用于确保正确的绝对深度值。在三个公共数据集上进行的大量实验表明,我们的DM-GAN在更高的重建精度和更高的深度完整性方面明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信