Computation of Matrix Chain Products on Parallel Machines

Elad Weiss, O. Schwartz
{"title":"Computation of Matrix Chain Products on Parallel Machines","authors":"Elad Weiss, O. Schwartz","doi":"10.1109/IPDPS.2019.00059","DOIUrl":null,"url":null,"abstract":"The Matrix Chain Ordering Problem is a well studied optimization problem, aiming at finding optimal parentheses assignment for minimizing the number of arithmetic operations required when computing a chain of matrix multiplications. Existing algorithms include the O(N^3) dynamic programming of Godbole (1973) and the faster O(NlogN) algorithm of Hu and Shing (1982). We show that both may result in sub-optimal parentheses assignment for modern machines as they do not take into account inter-processor communication costs that often dominate the running time. Further, the optimal solution may change when using fast matrix multiplication algorithms. We adapt the O(N^3) dynamic programming algorithm to provide optimal solutions for modern machines and modern matrix multiplication algorithms, and obtain an adaption of the O(NlogN) algorithm that guarantees a constant approximation.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Matrix Chain Ordering Problem is a well studied optimization problem, aiming at finding optimal parentheses assignment for minimizing the number of arithmetic operations required when computing a chain of matrix multiplications. Existing algorithms include the O(N^3) dynamic programming of Godbole (1973) and the faster O(NlogN) algorithm of Hu and Shing (1982). We show that both may result in sub-optimal parentheses assignment for modern machines as they do not take into account inter-processor communication costs that often dominate the running time. Further, the optimal solution may change when using fast matrix multiplication algorithms. We adapt the O(N^3) dynamic programming algorithm to provide optimal solutions for modern machines and modern matrix multiplication algorithms, and obtain an adaption of the O(NlogN) algorithm that guarantees a constant approximation.
并联机上矩阵链积的计算
矩阵链排序问题是一个被广泛研究的优化问题,其目的是在计算矩阵乘法链时找到最优的括号分配,以使所需的算术运算次数最少。现有的算法有Godbole(1973)的O(N^3)动态规划算法和Hu and Shing(1982)更快的O(NlogN)算法。我们表明,对于现代机器,这两种方法都可能导致次优括号赋值,因为它们没有考虑处理器间通信成本,而处理器间通信成本通常是运行时间的主要因素。此外,当使用快速矩阵乘法算法时,最优解可能会发生变化。我们采用O(N^3)动态规划算法来为现代机器和现代矩阵乘法算法提供最优解,并获得了O(NlogN)算法的自适应,保证了常数近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信