Impact of CUDA and OpenCL on Parallel and Distributed Computing

A. Asaduzzaman, Alec Trent, S. Osborne, C. Aldershof, F. Sibai
{"title":"Impact of CUDA and OpenCL on Parallel and Distributed Computing","authors":"A. Asaduzzaman, Alec Trent, S. Osborne, C. Aldershof, F. Sibai","doi":"10.1109/ICEEE52452.2021.9415927","DOIUrl":null,"url":null,"abstract":"Along with high performance computer systems, the Application Programming Interface (API) used is crucial to develop efficient solutions for modern parallel and distributed computing. Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) are two popular APIs that allow General Purpose Graphics Processing Unit (GPGPU, GPU for short) to accelerate processing in applications where they are supported. This paper presents a comparative study of OpenCL and CUDA and their impact on parallel and distributed computing. Mandelbrot set (represents complex numbers) generation, Marching Squares algorithm (represents embarrassingly parallelism), and Bitonic Sorting algorithm (represents distributed computing) are implemented using OpenCL (version 2.x) and CUDA (version 9.x) and run on a Linux-based High Performance Computing (HPC) system. The HPC system uses an Intel i7-9700k processor and an Nvidia GTX 1070 GPU card. Experimental results from 25 different tests using the Mandelbrot Set generation, the Marching Squares algorithm, and the Bitonic Sorting algorithm are analyzed. According to the experimental results, CUDA performs better than OpenCL (up to 7.34x speedup). However, in most cases, OpenCL performs at an acceptable rate (CUDA speedup is less than 2x).","PeriodicalId":429645,"journal":{"name":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE52452.2021.9415927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Along with high performance computer systems, the Application Programming Interface (API) used is crucial to develop efficient solutions for modern parallel and distributed computing. Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) are two popular APIs that allow General Purpose Graphics Processing Unit (GPGPU, GPU for short) to accelerate processing in applications where they are supported. This paper presents a comparative study of OpenCL and CUDA and their impact on parallel and distributed computing. Mandelbrot set (represents complex numbers) generation, Marching Squares algorithm (represents embarrassingly parallelism), and Bitonic Sorting algorithm (represents distributed computing) are implemented using OpenCL (version 2.x) and CUDA (version 9.x) and run on a Linux-based High Performance Computing (HPC) system. The HPC system uses an Intel i7-9700k processor and an Nvidia GTX 1070 GPU card. Experimental results from 25 different tests using the Mandelbrot Set generation, the Marching Squares algorithm, and the Bitonic Sorting algorithm are analyzed. According to the experimental results, CUDA performs better than OpenCL (up to 7.34x speedup). However, in most cases, OpenCL performs at an acceptable rate (CUDA speedup is less than 2x).
CUDA和OpenCL对并行和分布式计算的影响
与高性能计算机系统一样,应用程序编程接口(API)对于开发现代并行和分布式计算的有效解决方案至关重要。计算统一设备架构(CUDA)和开放计算语言(OpenCL)是两个流行的api,它们允许通用图形处理单元(GPGPU,简称GPU)在支持它们的应用程序中加速处理。本文介绍了OpenCL和CUDA的比较研究及其对并行和分布式计算的影响。Mandelbrot集合(表示复数)生成、Marching Squares算法(表示令人尴尬的并行性)和Bitonic排序算法(表示分布式计算)使用OpenCL(版本2.x)和CUDA(版本9.x)实现,并在基于linux的高性能计算(HPC)系统上运行。HPC系统采用Intel i7-9700k处理器和Nvidia GTX 1070 GPU卡。分析了使用Mandelbrot集合生成、行进广场算法和Bitonic排序算法进行的25种不同测试的实验结果。根据实验结果,CUDA的性能优于OpenCL(高达7.34倍的加速)。然而,在大多数情况下,OpenCL的执行速度是可以接受的(CUDA加速不到2倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信