S. S. Behera, Mahesh Gour, Vivek Kanhangad, N. Puhan
{"title":"Periocular recognition in cross-spectral scenario","authors":"S. S. Behera, Mahesh Gour, Vivek Kanhangad, N. Puhan","doi":"10.1109/BTAS.2017.8272757","DOIUrl":null,"url":null,"abstract":"Periocular recognition has been an active area of research in the past few years. In spite of the advancements made in this area, the cross-spectral matching of visible (VIS) and near-infrared (NIR) periocular images remains a challenge. In this paper, we propose a method based on illumination normalization of VIS and NIR periocular images. Specifically, the approach involves normalizing the images using the difference of Gaussian (DoG) filtering, followed by the computation of a descriptor that captures structural details in the illumination normalized images using histogram of oriented gradients (HOG). Finally, the feature vectors corresponding to the query and the enrolled image are compared using the cosine similarity metric to generate a matching score. Performance of our algorithm has been evaluated on three publicly available benchmark databases of cross-spectral periocular images. Our approach yields significant improvement in performance over the existing approach.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Periocular recognition has been an active area of research in the past few years. In spite of the advancements made in this area, the cross-spectral matching of visible (VIS) and near-infrared (NIR) periocular images remains a challenge. In this paper, we propose a method based on illumination normalization of VIS and NIR periocular images. Specifically, the approach involves normalizing the images using the difference of Gaussian (DoG) filtering, followed by the computation of a descriptor that captures structural details in the illumination normalized images using histogram of oriented gradients (HOG). Finally, the feature vectors corresponding to the query and the enrolled image are compared using the cosine similarity metric to generate a matching score. Performance of our algorithm has been evaluated on three publicly available benchmark databases of cross-spectral periocular images. Our approach yields significant improvement in performance over the existing approach.