Probabilistic Brain Fiber Tractography on GPUs

Mo Xu, Xiaorui Zhang, Yu Wang, Ling Ren, Ziyu Wen, Yi Xu, G. Gong, Ningyi Xu, Huazhong Yang
{"title":"Probabilistic Brain Fiber Tractography on GPUs","authors":"Mo Xu, Xiaorui Zhang, Yu Wang, Ling Ren, Ziyu Wen, Yi Xu, G. Gong, Ningyi Xu, Huazhong Yang","doi":"10.1109/IPDPSW.2012.92","DOIUrl":null,"url":null,"abstract":"Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an emerging technique that explores the structural connectivity of the human brain. The probabilistic fiber tractography based on DT-MRI data behaves more robustly than deterministic approaches in the presence of fiber crossings, but requires more prohibitive computational time. In this work we present a GPU-based probabilistic framework for brain fiber tractography. The framework includes two main steps: 1) Markov-Chain Monte-Carlo (MCMC) sampling, and 2) probabilistic streamlining fiber tracking. We implement the Metropolis-Hastings sampling for local parameter estimation on GPU. In the probabilistic streamlining fiber tracking, we find that fiber lengths are exponentially distributed, and propose a novel segmenting strategy to improve the load balance. On mid-range GPUs, we achieve performance gains up to 34x and 50x over CPUs for the two steps respectively.","PeriodicalId":378335,"journal":{"name":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2012.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an emerging technique that explores the structural connectivity of the human brain. The probabilistic fiber tractography based on DT-MRI data behaves more robustly than deterministic approaches in the presence of fiber crossings, but requires more prohibitive computational time. In this work we present a GPU-based probabilistic framework for brain fiber tractography. The framework includes two main steps: 1) Markov-Chain Monte-Carlo (MCMC) sampling, and 2) probabilistic streamlining fiber tracking. We implement the Metropolis-Hastings sampling for local parameter estimation on GPU. In the probabilistic streamlining fiber tracking, we find that fiber lengths are exponentially distributed, and propose a novel segmenting strategy to improve the load balance. On mid-range GPUs, we achieve performance gains up to 34x and 50x over CPUs for the two steps respectively.
基于gpu的概率脑纤维束图
扩散张量磁共振成像(DT-MRI)是一种探索人类大脑结构连通性的新兴技术。在存在纤维交叉的情况下,基于DT-MRI数据的概率纤维束图比确定性方法表现得更健壮,但需要更多的计算时间。在这项工作中,我们提出了一个基于gpu的脑纤维束成像概率框架。该框架包括两个主要步骤:1)马尔可夫链蒙特卡罗(MCMC)采样和2)概率流线光纤跟踪。我们在GPU上实现了用于局部参数估计的Metropolis-Hastings采样。在概率流线光纤跟踪中,我们发现光纤长度呈指数分布,并提出了一种新的分段策略来改善负载平衡。在中档gpu上,我们分别实现了34倍和50倍的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信