A deep learning-based intelligent analysis platform for fetal ultrasound four-chamber views

Sibo Qiao, Shanchen Pang, Yukun Dong, Haiyuan Gui, Qiwen Yuan, Zelong Zheng, Guoxuan Cui
{"title":"A deep learning-based intelligent analysis platform for fetal ultrasound four-chamber views","authors":"Sibo Qiao, Shanchen Pang, Yukun Dong, Haiyuan Gui, Qiwen Yuan, Zelong Zheng, Guoxuan Cui","doi":"10.1109/ISPDS56360.2022.9874029","DOIUrl":null,"url":null,"abstract":"The four-chamber view is the primary ultrasound images that clinicians diagnose whether a fetus has congenital heart disease (CHD) in the process of prenatal diagnosis and screening, which can provide clinicians with a clear view of the developmental morphology of the fetal four chambers (i.e., left atrium, left ventricle, right atrium, and right ventricle). The early diagnosis and screening for CHD depend on the clinicians' experience to a large extent. Deep learning technology has achieved great success in medical image analysis. Hence, applying deep learning technology in the four-chamber view analysis can help improve the diagnostic accuracy of CHD and make it more objective. Hence, we design a deep learning-based intelligent analysis platform (DLIAP) for fetal ultrasound four-chamber views, which includes an image input module, an image analysis module, a visualization output module, and an information query module. The DLIAP can assist the clinicians in objectively analyzing the fetal ultrasound four-chamber views and further improve the diagnostic accuracy of CHD.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The four-chamber view is the primary ultrasound images that clinicians diagnose whether a fetus has congenital heart disease (CHD) in the process of prenatal diagnosis and screening, which can provide clinicians with a clear view of the developmental morphology of the fetal four chambers (i.e., left atrium, left ventricle, right atrium, and right ventricle). The early diagnosis and screening for CHD depend on the clinicians' experience to a large extent. Deep learning technology has achieved great success in medical image analysis. Hence, applying deep learning technology in the four-chamber view analysis can help improve the diagnostic accuracy of CHD and make it more objective. Hence, we design a deep learning-based intelligent analysis platform (DLIAP) for fetal ultrasound four-chamber views, which includes an image input module, an image analysis module, a visualization output module, and an information query module. The DLIAP can assist the clinicians in objectively analyzing the fetal ultrasound four-chamber views and further improve the diagnostic accuracy of CHD.
基于深度学习的胎儿超声四腔视图智能分析平台
四室图是临床医生在产前诊断筛查过程中诊断胎儿是否患有先天性心脏病(CHD)的主要超声图像,可以为临床医生提供胎儿四室(即左心房、左心室、右心房、右心室)发育形态的清晰视图。冠心病的早期诊断和筛查在很大程度上取决于临床医生的经验。深度学习技术在医学图像分析中取得了巨大的成功。因此,在四腔面分析中应用深度学习技术有助于提高冠心病的诊断准确性,使其更加客观。因此,我们设计了一个基于深度学习的胎儿超声四腔视图智能分析平台(DLIAP),该平台包括图像输入模块、图像分析模块、可视化输出模块和信息查询模块。DLIAP可协助临床医生客观分析胎儿超声四腔面,进一步提高冠心病的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信