Reduction of the entries number of the training set for ANN through formal concept analysis and its application to solar energy systems

Renato Vimieiro, Luis E. Zárate, E. M. Pereira, A. S. C. Diniz
{"title":"Reduction of the entries number of the training set for ANN through formal concept analysis and its application to solar energy systems","authors":"Renato Vimieiro, Luis E. Zárate, E. M. Pereira, A. S. C. Diniz","doi":"10.1109/SMCIA.2005.1466965","DOIUrl":null,"url":null,"abstract":"The artificial intelligence has been developed in order to represent human knowledge in computers systems. It has two main fields: the symbolic field that works with symbolic data; and the connectionist field whose main example is artificial neural network and whose main characteristic is the capacity of learning by data samples. To obtain a high accuracy with generalization capacity net, the data set should cover all the problem possibilities. This situation can increase the time spent by the training process. Then, techniques for reducing the number of training sets preserving the representative characteristic are necessary. As formal concept analysis has been proposed as a powerful tool for data analysis, it has been used in this work as a way to reduce the training set elements number.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The artificial intelligence has been developed in order to represent human knowledge in computers systems. It has two main fields: the symbolic field that works with symbolic data; and the connectionist field whose main example is artificial neural network and whose main characteristic is the capacity of learning by data samples. To obtain a high accuracy with generalization capacity net, the data set should cover all the problem possibilities. This situation can increase the time spent by the training process. Then, techniques for reducing the number of training sets preserving the representative characteristic are necessary. As formal concept analysis has been proposed as a powerful tool for data analysis, it has been used in this work as a way to reduce the training set elements number.
通过形式概念分析减少人工神经网络训练集的条目数及其在太阳能系统中的应用
人工智能是为了在计算机系统中表示人类知识而发展起来的。它有两个主要字段:处理符号数据的符号字段;连接主义领域,其主要例子是人工神经网络,其主要特征是通过数据样本学习的能力。为了获得具有泛化能力的高精度网络,数据集应该涵盖所有问题的可能性。这种情况会增加培训过程所花费的时间。然后,减少保留代表性特征的训练集数量的技术是必要的。由于形式概念分析已被提出作为数据分析的强大工具,因此在本工作中已将其用作减少训练集元素数量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信