Birational geometry of the intermediate Jacobian fibration of a cubic fourfold

Giulia Saccà, with an appendix by Claire Voisin
{"title":"Birational geometry of the intermediate Jacobian fibration of a cubic fourfold","authors":"Giulia Saccà, with an appendix by Claire Voisin","doi":"10.2140/gt.2023.27.1479","DOIUrl":null,"url":null,"abstract":"We show that the intermediate Jacobian fibration associated to any smooth cubic fourfold $X$ admits a hyper-K\\\"ahler compactification $J(X)$ with a regular Lagrangian fibration $J \\to \\mathbb P^5$. This builds upon arXiv:1602.05534, where the result is proved for general $X$, as well as on the degeneration techniques on arXiv:1704.02731 and techniques from the minimal model program. We then study some aspects of the birational geometry of $J(X)$: for very general $X$ we compute the movable and nef cones of $J(X)$, showing that $J(X)$ is not birational to the twisted version of the intermediate Jacobian fibration arXiv:1611.06679, nor to an OG$10$-type moduli space of objects in the Kuznetsov component of $X$; for any smooth $X$ we show, using normal functions, that the Mordell-Weil group $MW(\\pi)$ of the abelian fibration $\\pi: J \\to \\mathbb P^5$ is isomorphic to the integral degree $4$ primitive algebraic cohomology of $X$, i.e., $MW(\\pi) = H^{2,2}(X, \\mathbb Z)_0$.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We show that the intermediate Jacobian fibration associated to any smooth cubic fourfold $X$ admits a hyper-K\"ahler compactification $J(X)$ with a regular Lagrangian fibration $J \to \mathbb P^5$. This builds upon arXiv:1602.05534, where the result is proved for general $X$, as well as on the degeneration techniques on arXiv:1704.02731 and techniques from the minimal model program. We then study some aspects of the birational geometry of $J(X)$: for very general $X$ we compute the movable and nef cones of $J(X)$, showing that $J(X)$ is not birational to the twisted version of the intermediate Jacobian fibration arXiv:1611.06679, nor to an OG$10$-type moduli space of objects in the Kuznetsov component of $X$; for any smooth $X$ we show, using normal functions, that the Mordell-Weil group $MW(\pi)$ of the abelian fibration $\pi: J \to \mathbb P^5$ is isomorphic to the integral degree $4$ primitive algebraic cohomology of $X$, i.e., $MW(\pi) = H^{2,2}(X, \mathbb Z)_0$.
三次四重的中间雅可比颤振的双几何
我们证明了与任意光滑三次四重$X$相关联的中间雅可比纤维具有正则拉格朗日纤维$J \到$ mathbb P^5$的超k \ ahler紧化$J(X)$。这建立在arXiv:1602.05534的基础上,其中的结果证明了一般$X$,以及arXiv:1704.02731上的退化技术和最小模型程序的技术。然后,我们研究了$J(X)$的一些方面:对于非常一般的$X$,我们计算了$J(X)$的可动锥和内锥,表明$J(X)$与中间雅可比纤维arXiv:1611.06679的扭曲版本无关,也与$X$的Kuznetsov分量中的对象的OG$10$型模空间无关;对于任意光滑的$X$,我们利用正规函数证明了$\pi: J $到$ mathbb P^5$的abelian纤维$MW(\pi)$与$X$的整数次$4$原初代数上同构,即$MW(\pi) = H^{2,2}(X, \mathbb Z)_0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信