ClusterTag: Interactive Visualization, Clustering and Tagging Tool for Big Image Collections

Konstantin Pogorelov, M. Riegler, P. Halvorsen, C. Griwodz
{"title":"ClusterTag: Interactive Visualization, Clustering and Tagging Tool for Big Image Collections","authors":"Konstantin Pogorelov, M. Riegler, P. Halvorsen, C. Griwodz","doi":"10.1145/3078971.3079018","DOIUrl":null,"url":null,"abstract":"Exploring and annotating collections of images without meta-data is a complex task which requires convenient ways of presenting datasets to a user. Visual analytics and information visualization can help users by providing interfaces, and in this paper, we present an open source application that allows users from any domain to use feature-based clustering of large image collections to perform explorative browsing and annotation. For this, we use various image feature extraction mechanisms, different unsupervised clustering algorithms and hierarchical image collection visualization. The performance of the presented open source software allows users to process and display thousands of images at the same time by utilizing heterogeneous resources such as GPUs and different optimization techniques.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Exploring and annotating collections of images without meta-data is a complex task which requires convenient ways of presenting datasets to a user. Visual analytics and information visualization can help users by providing interfaces, and in this paper, we present an open source application that allows users from any domain to use feature-based clustering of large image collections to perform explorative browsing and annotation. For this, we use various image feature extraction mechanisms, different unsupervised clustering algorithms and hierarchical image collection visualization. The performance of the presented open source software allows users to process and display thousands of images at the same time by utilizing heterogeneous resources such as GPUs and different optimization techniques.
用于大图像集合的交互式可视化、聚类和标记工具
在没有元数据的情况下探索和注释图像集合是一项复杂的任务,它需要向用户呈现数据集的方便方法。可视化分析和信息可视化可以通过提供界面来帮助用户,在本文中,我们提出了一个开源应用程序,允许来自任何领域的用户使用基于特征的大型图像集合聚类来执行探索性浏览和注释。为此,我们使用了各种图像特征提取机制、不同的无监督聚类算法和分层图像采集可视化。所提出的开源软件的性能允许用户通过利用gpu等异构资源和不同的优化技术,同时处理和显示数千张图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信