Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace

Anton S. Zadorin
{"title":"Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace","authors":"Anton S. Zadorin","doi":"10.3934/cpaa.2022030","DOIUrl":null,"url":null,"abstract":"A generalisation of reaction diffusion systems and their travelling solutions to cases when the productive part of the reaction happens only on a surface in space or on a line on plane but the degradation and the diffusion happen in bulk are important for modelling various biological processes. These include problems of invasive species propagation along boundaries of ecozones, problems of gene spread in such situations, morphogenesis in cavities, intracellular reaction etc. Piecewise linear approximations of reaction terms in reaction-diffusion systems often result in exact solutions of propagation front problems. This article presents an exact travelling solution for a reaction-diffusion system with a piecewise constant production restricted to a codimension-1 subset. The solution is monotone, propagates with the unique constant velocity, and connects the trivial solution to a nontrivial nonhomogeneous stationary solution of the problem. The properties of the solution closely parallel the properties of monotone travelling solutions in classical bistable reaction-diffusion systems.","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"120 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A generalisation of reaction diffusion systems and their travelling solutions to cases when the productive part of the reaction happens only on a surface in space or on a line on plane but the degradation and the diffusion happen in bulk are important for modelling various biological processes. These include problems of invasive species propagation along boundaries of ecozones, problems of gene spread in such situations, morphogenesis in cavities, intracellular reaction etc. Piecewise linear approximations of reaction terms in reaction-diffusion systems often result in exact solutions of propagation front problems. This article presents an exact travelling solution for a reaction-diffusion system with a piecewise constant production restricted to a codimension-1 subset. The solution is monotone, propagates with the unique constant velocity, and connects the trivial solution to a nontrivial nonhomogeneous stationary solution of the problem. The properties of the solution closely parallel the properties of monotone travelling solutions in classical bistable reaction-diffusion systems.
具有余维1子空间支持的分段常数生产的反应扩散系统的精确行进解
当反应的生产部分只发生在空间中的一个表面或平面上的一条直线上,而降解和扩散发生在整体上时,反应扩散系统的推广及其旅行解对于模拟各种生物过程是重要的。这些问题包括入侵物种沿生态带边界繁殖的问题、在这种情况下基因传播的问题、腔内形态发生的问题、细胞内反应等。对反应扩散系统中的反应项进行分段线性近似,往往能得到传播前问题的精确解。本文给出了一类反应扩散系统的精确旅行解,该系统具有限制于余维1子集的分段常数生产。解是单调的,以唯一的恒定速度传播,并将问题的平凡解与问题的非平凡非齐次平稳解联系起来。该解的性质与经典双稳反应扩散体系中单调行解的性质非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信