Chinese Nominal Entity Recognition with Semantic Role Labeling

Wenbo Pang, Xiaozhong Fan
{"title":"Chinese Nominal Entity Recognition with Semantic Role Labeling","authors":"Wenbo Pang, Xiaozhong Fan","doi":"10.1109/WNIS.2009.59","DOIUrl":null,"url":null,"abstract":"Nominal entity recognition is a fundamental task in natural language processing. Semantic role labeling views a sentence as a predicate-arguments structure, which provides an alternative perspective for the boundary detection and type recognition of nominal entity. In this paper, we propose a nominal entity recognition method with semantic role labeling. First, a Maximum Entropy (ME) model is trained on unlabeled data to address the data sparse problem in acquiring the preferences for each pair of predicate and argument. Then, use the information of semantic role labeling as features in a high quality nominal entity model. The experiments on ACE 2004 Chinese data show that the proposed method improves the performance of the high quality nominal entity recognizer, and achieves higher accuracy and recall rate.","PeriodicalId":280001,"journal":{"name":"2009 International Conference on Wireless Networks and Information Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wireless Networks and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNIS.2009.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nominal entity recognition is a fundamental task in natural language processing. Semantic role labeling views a sentence as a predicate-arguments structure, which provides an alternative perspective for the boundary detection and type recognition of nominal entity. In this paper, we propose a nominal entity recognition method with semantic role labeling. First, a Maximum Entropy (ME) model is trained on unlabeled data to address the data sparse problem in acquiring the preferences for each pair of predicate and argument. Then, use the information of semantic role labeling as features in a high quality nominal entity model. The experiments on ACE 2004 Chinese data show that the proposed method improves the performance of the high quality nominal entity recognizer, and achieves higher accuracy and recall rate.
基于语义角色标注的汉语标称实体识别
名义实体识别是自然语言处理中的一项基本任务。语义角色标注将句子视为谓词-参数结构,为名义实体的边界检测和类型识别提供了另一种视角。本文提出了一种带有语义角色标注的标称实体识别方法。首先,在未标记数据上训练最大熵模型,以解决获取每对谓词和参数的偏好时的数据稀疏问题。然后,利用语义角色标注信息作为特征构建高质量的标称实体模型。在ACE 2004中文数据上的实验表明,该方法提高了高质量标称实体识别器的性能,达到了更高的识别率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信