Adaptive Block Error Correction for Memristive Crossbars

Surendra Hemaram, M. Mayahinia, M. Tahoori
{"title":"Adaptive Block Error Correction for Memristive Crossbars","authors":"Surendra Hemaram, M. Mayahinia, M. Tahoori","doi":"10.1109/IOLTS56730.2022.9897817","DOIUrl":null,"url":null,"abstract":"Matrix-vector multiplication (MVM) is one of the most frequent operations performed in deep learning and big data applications. On the other hand, the Memory wall problem in traditional processor-centric architectures limits the performance of these applications. The crossbar array of emerging non-volatile memristive devices (memristive crossbar) provides an energy-efficient hardware implementation of MVM for deep learning accelerators and edge computing hardware. However, non-idealities as well as manufacturing and runtime defects of the memristive devices may severely impact the reliability of target applications. This paper presents a new online block error correction technique for memristive crossbars. It enables reliable MVM computation by combining the idea of checksum and Hamming code-based linear coding scheme. The proposed method can correct any number of errors in one particular array block containing multiple columns. An adaptive error correction coding strategy is also presented, so that the ratio of data columns to the parity checksum columns can be adjusted at runtime based on the fault rate, enabling the optimum use of data and parity checksum columns.","PeriodicalId":274595,"journal":{"name":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS56730.2022.9897817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix-vector multiplication (MVM) is one of the most frequent operations performed in deep learning and big data applications. On the other hand, the Memory wall problem in traditional processor-centric architectures limits the performance of these applications. The crossbar array of emerging non-volatile memristive devices (memristive crossbar) provides an energy-efficient hardware implementation of MVM for deep learning accelerators and edge computing hardware. However, non-idealities as well as manufacturing and runtime defects of the memristive devices may severely impact the reliability of target applications. This paper presents a new online block error correction technique for memristive crossbars. It enables reliable MVM computation by combining the idea of checksum and Hamming code-based linear coding scheme. The proposed method can correct any number of errors in one particular array block containing multiple columns. An adaptive error correction coding strategy is also presented, so that the ratio of data columns to the parity checksum columns can be adjusted at runtime based on the fault rate, enabling the optimum use of data and parity checksum columns.
忆阻交叉棒的自适应块误差校正
矩阵向量乘法(MVM)是深度学习和大数据应用中最常见的运算之一。另一方面,传统的以处理器为中心的架构中的内存墙问题限制了这些应用程序的性能。然而,忆阻器件的非理想性以及制造和运行缺陷可能严重影响目标应用程序的可靠性。提出了一种新的记忆栅在线块纠错技术。它结合了校验和思想和基于汉明码的线性编码方案,实现了可靠的MVM计算。所提出的方法可以纠正包含多个列的特定数组块中的任意数量的错误。提出了一种自适应纠错编码策略,使数据列与奇偶校验和列的比例可以在运行时根据错误率进行调整,从而实现数据和奇偶校验和列的最佳使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信