Microarray data analysis for cancer classification

A. Osareh, B. Shadgar
{"title":"Microarray data analysis for cancer classification","authors":"A. Osareh, B. Shadgar","doi":"10.1109/HIBIT.2010.5478893","DOIUrl":null,"url":null,"abstract":"Cancer diagnosis is one of the most important emerging clinical applications of gene expression microarray data. In this work, we aim to develop an automated system for robust and reliable cancer diagnoses based on gene microarray data. Support vector machine classifiers outperform other popular classifiers, such as K nearest neighbours, naive Bayes, neural networks and decision tree, often to a remarkable degree. We choose a set of 9 publicly available benchmark microarray datasets that encompass both binary and multi-class cancer problems. Results of comparative studies are provided, demonstrating that effective feature selection is essential to the development of classifiers intended for use in gene-based cancer classification. In particular, amongst various systematic experiments carried out, best classification model is achieved using a subset of features chosen via information gain feature ranking for support vector machine classifier.","PeriodicalId":215457,"journal":{"name":"2010 5th International Symposium on Health Informatics and Bioinformatics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Symposium on Health Informatics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIBIT.2010.5478893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Cancer diagnosis is one of the most important emerging clinical applications of gene expression microarray data. In this work, we aim to develop an automated system for robust and reliable cancer diagnoses based on gene microarray data. Support vector machine classifiers outperform other popular classifiers, such as K nearest neighbours, naive Bayes, neural networks and decision tree, often to a remarkable degree. We choose a set of 9 publicly available benchmark microarray datasets that encompass both binary and multi-class cancer problems. Results of comparative studies are provided, demonstrating that effective feature selection is essential to the development of classifiers intended for use in gene-based cancer classification. In particular, amongst various systematic experiments carried out, best classification model is achieved using a subset of features chosen via information gain feature ranking for support vector machine classifier.
微阵列数据分析用于癌症分类
癌症诊断是基因表达芯片数据最重要的新兴临床应用之一。在这项工作中,我们的目标是开发一个基于基因微阵列数据的可靠的癌症诊断自动化系统。支持向量机分类器优于其他流行的分类器,如K近邻,朴素贝叶斯,神经网络和决策树,通常在很大程度上。我们选择了一组9个公开可用的基准微阵列数据集,包括二进制和多类癌症问题。对比研究的结果表明,有效的特征选择对于用于基于基因的癌症分类的分类器的开发至关重要。特别是,在进行的各种系统实验中,通过支持向量机分类器的信息增益特征排序选择特征子集来获得最佳分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信