Customer Churn Prediction for a Motor Insurance Company

Marika Spiteri, G. Azzopardi
{"title":"Customer Churn Prediction for a Motor Insurance Company","authors":"Marika Spiteri, G. Azzopardi","doi":"10.1109/ICDIM.2018.8847066","DOIUrl":null,"url":null,"abstract":"Customer churn poses a significant challenge in various industries, including motor insurance. Retaining customers within insurance companies is much more challenging than in any other industry as policies are generally renewed every year. The main aim of this research is to identify the risk factors associated with churn, establish who are the churning customers and to model time until churn. The dataset used includes 72,445 policy holders and covers a period of one year. The data comprises information related to premiums, claims, policies and policy holders. The random forest algorithm turns out to be a very effective model for forecasting customer churn, reaching an accuracy rate of 91.18%. On the other hand, survival analysis was used to model time until churn and it was concluded that approximately 90% of the policy holders survived for the first five years while the majority of the policy holders survived till the end of the policy period. These results could be used to target the identified customers in marketing campaigns aimed at reducing the rate of churn while increasing profitability.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8847066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Customer churn poses a significant challenge in various industries, including motor insurance. Retaining customers within insurance companies is much more challenging than in any other industry as policies are generally renewed every year. The main aim of this research is to identify the risk factors associated with churn, establish who are the churning customers and to model time until churn. The dataset used includes 72,445 policy holders and covers a period of one year. The data comprises information related to premiums, claims, policies and policy holders. The random forest algorithm turns out to be a very effective model for forecasting customer churn, reaching an accuracy rate of 91.18%. On the other hand, survival analysis was used to model time until churn and it was concluded that approximately 90% of the policy holders survived for the first five years while the majority of the policy holders survived till the end of the policy period. These results could be used to target the identified customers in marketing campaigns aimed at reducing the rate of churn while increasing profitability.
汽车保险公司客户流失预测
客户流失对包括汽车保险在内的许多行业都构成了重大挑战。在保险公司内留住客户比在任何其他行业都更具挑战性,因为保单通常每年都要更新。本研究的主要目的是确定与流失相关的风险因素,确定谁是流失的客户,并对流失之前的时间进行建模。使用的数据集包括72,445名保单持有人,涵盖一年的时间。数据包括与保费、索偿、保单及保单持有人有关的资料。随机森林算法是一个非常有效的预测客户流失的模型,准确率达到91.18%。另一方面,生存分析被用来模拟直到流失的时间,得出的结论是,大约90%的保单持有人在前五年存活下来,而大多数保单持有人存活到保单期结束。这些结果可以用来在营销活动中针对确定的客户,旨在降低流失率,同时提高盈利能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信