Flow field visualization using vector field perpendicular surfaces

K. L. Palmerius, M. Cooper, A. Ynnerman
{"title":"Flow field visualization using vector field perpendicular surfaces","authors":"K. L. Palmerius, M. Cooper, A. Ynnerman","doi":"10.1145/1980462.1980471","DOIUrl":null,"url":null,"abstract":"This paper introduces Vector Field Perpendicular Surfaces as a means to represent vector data with special focus on variations across the vectors in the field. These surfaces are a perpendicular analogue to streamlines, with the vector data always being parallel to the normals of the surface. In this way the orientation of the data is conveyed to the viewer, while providing a continuous representation across the vectors of the field. This paper describes the properties of such surfaces including an issue with helicity density in the vector data, an approach to generating them, several stop conditions and special means to handle also fields with non-zero helicity density.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1980462.1980471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper introduces Vector Field Perpendicular Surfaces as a means to represent vector data with special focus on variations across the vectors in the field. These surfaces are a perpendicular analogue to streamlines, with the vector data always being parallel to the normals of the surface. In this way the orientation of the data is conveyed to the viewer, while providing a continuous representation across the vectors of the field. This paper describes the properties of such surfaces including an issue with helicity density in the vector data, an approach to generating them, several stop conditions and special means to handle also fields with non-zero helicity density.
流场可视化使用向量场垂直表面
本文介绍了向量场垂直曲面作为一种表示矢量数据的方法,并特别关注了场中矢量之间的变化。这些曲面是流线的垂直模拟,矢量数据总是平行于曲面的法线。通过这种方式,数据的方向被传达给查看器,同时提供跨场向量的连续表示。本文描述了这类曲面的性质,包括矢量数据中的螺旋密度问题、生成它们的方法、几种停止条件和处理非零螺旋密度场的特殊方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信