An improvement of flat approach on hierarchical text classification using top-level pruning classifiers

Natchanon Phachongkitphiphat, P. Vateekul
{"title":"An improvement of flat approach on hierarchical text classification using top-level pruning classifiers","authors":"Natchanon Phachongkitphiphat, P. Vateekul","doi":"10.1109/JCSSE.2014.6841847","DOIUrl":null,"url":null,"abstract":"Hierarchical classification has been becoming a popular research topic nowadays, particularly on the web as text categorization. For a large web corpus, there can be a hierarchy with hundreds of thousands of topics, so it is common to handle this task using a flat classification approach, inducing a binary classifier only for the leaf-node classes. However, it always suffers from such low prediction accuracy due to an imbalanced issue in the training data. In this paper, we propose two novel strategies: (i) “Top-Level Pruning” to narrow down the candidate classes, and (ii) “Exclusive Top-Level Training Policy” to build more effective classifiers by utilizing the top-level data. The experiments on the Wikipedia dataset show that our system outperforms the traditional flat approach unanimously on all hierarchical classification metrics.","PeriodicalId":331610,"journal":{"name":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2014.6841847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hierarchical classification has been becoming a popular research topic nowadays, particularly on the web as text categorization. For a large web corpus, there can be a hierarchy with hundreds of thousands of topics, so it is common to handle this task using a flat classification approach, inducing a binary classifier only for the leaf-node classes. However, it always suffers from such low prediction accuracy due to an imbalanced issue in the training data. In this paper, we propose two novel strategies: (i) “Top-Level Pruning” to narrow down the candidate classes, and (ii) “Exclusive Top-Level Training Policy” to build more effective classifiers by utilizing the top-level data. The experiments on the Wikipedia dataset show that our system outperforms the traditional flat approach unanimously on all hierarchical classification metrics.
基于顶层修剪分类器的分层文本分类平面方法改进
层次分类已经成为当今研究的热门话题,尤其是在网络上的文本分类。对于大型web语料库,可能存在包含数十万个主题的层次结构,因此通常使用扁平分类方法处理此任务,仅为叶节点类引入二元分类器。然而,由于训练数据的不平衡问题,它的预测精度一直很低。在本文中,我们提出了两种新颖的策略:(i)“top- top Pruning”来缩小候选类的范围;(ii)“Exclusive top- top Training Policy”来利用顶级数据构建更有效的分类器。在维基百科数据集上的实验表明,我们的系统在所有层次分类指标上都一致优于传统的扁平方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信