{"title":"Modeling and control analysis of a flapping-wing micro aerial vehicle","authors":"K. Peng, F. Lin, Ben M. Chen","doi":"10.1109/ICCA.2017.8003076","DOIUrl":null,"url":null,"abstract":"A nonlinear model of a flapping-wing micro aerial vehicle (MAV) is built in which the load acceleration and equivalent moment are formulated linearly in the body frame. The aerodynamic force and moment are not considered directly because the mass and moment of inertia of the flapping-wing MAV are too tiny. The visual measurement system (VMS) is taken to measure the flight data such as the position and Euler angles of the plant because there is no onboard sensor. The nonlinear optimization is applied to identify the parameters in the nonlinear model. Based on the built model, the under-actuated control laws are designed with the hierarchical dynamic inversion (HDI). The designed under-actuated control laws are verified in simulation. The simulation results demonstrate that the resulting closed-loop system is capable of asymptotically tracking the references in which the yaw angle is free. The modeling and control analysis are useful to development of the flapping-wing MAVs.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A nonlinear model of a flapping-wing micro aerial vehicle (MAV) is built in which the load acceleration and equivalent moment are formulated linearly in the body frame. The aerodynamic force and moment are not considered directly because the mass and moment of inertia of the flapping-wing MAV are too tiny. The visual measurement system (VMS) is taken to measure the flight data such as the position and Euler angles of the plant because there is no onboard sensor. The nonlinear optimization is applied to identify the parameters in the nonlinear model. Based on the built model, the under-actuated control laws are designed with the hierarchical dynamic inversion (HDI). The designed under-actuated control laws are verified in simulation. The simulation results demonstrate that the resulting closed-loop system is capable of asymptotically tracking the references in which the yaw angle is free. The modeling and control analysis are useful to development of the flapping-wing MAVs.