Hardware-accelerating the BLASTN bioinformatics algorithm using high level synthesis

Reem Khairy, M. Safar, M. El-Kharashi
{"title":"Hardware-accelerating the BLASTN bioinformatics algorithm using high level synthesis","authors":"Reem Khairy, M. Safar, M. El-Kharashi","doi":"10.1109/ICCES.2017.8275339","DOIUrl":null,"url":null,"abstract":"BLASTN is one of the most known algorithms used for biological sequence analysis in bioinformatics. This algorithm is highly optimized for similarity searches. However, the significance increase in the size of genomic databases causes performance degradation in the search algorithm. Thus, there is an increasing need to accelerate this algorithm. This paper introduces a new hardware approach to accelerate BLASTN using high level synthesis. Our approach takes advantage of the high level synthesis capabilities in designing complex systems by simply writing the algorithm functionalities in high level language. Experimental results show a speedup up to 100x over software. Moreover, we proved the feasibility of our proposed HLS implementation through a comparison with similar algorithms. Our HLS BLASTN achieves an average speedup of 70x over the NCBI BLASTN implementation and a speedup of 11x over the Mercury BLASTN implementation. We conclude that high level synthesis is an appealing approach to accelerate the BLASTN algorithm to satisfy the high performance need of biological searches.","PeriodicalId":170532,"journal":{"name":"2017 12th International Conference on Computer Engineering and Systems (ICCES)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2017.8275339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BLASTN is one of the most known algorithms used for biological sequence analysis in bioinformatics. This algorithm is highly optimized for similarity searches. However, the significance increase in the size of genomic databases causes performance degradation in the search algorithm. Thus, there is an increasing need to accelerate this algorithm. This paper introduces a new hardware approach to accelerate BLASTN using high level synthesis. Our approach takes advantage of the high level synthesis capabilities in designing complex systems by simply writing the algorithm functionalities in high level language. Experimental results show a speedup up to 100x over software. Moreover, we proved the feasibility of our proposed HLS implementation through a comparison with similar algorithms. Our HLS BLASTN achieves an average speedup of 70x over the NCBI BLASTN implementation and a speedup of 11x over the Mercury BLASTN implementation. We conclude that high level synthesis is an appealing approach to accelerate the BLASTN algorithm to satisfy the high performance need of biological searches.
基于高级合成的BLASTN生物信息学算法硬件加速
BLASTN是生物信息学中用于生物序列分析的最著名的算法之一。该算法对相似度搜索进行了高度优化。然而,基因组数据库规模的显著增加会导致搜索算法的性能下降。因此,对该算法的加速需求越来越大。本文介绍了一种利用高阶合成加速BLASTN的硬件方法。我们的方法通过简单地用高级语言编写算法功能,利用了设计复杂系统的高级综合能力。实验结果表明,与软件相比,该算法的速度提高了100倍。此外,我们通过与类似算法的比较,证明了我们提出的HLS实现的可行性。我们的HLS BLASTN比NCBI BLASTN实现平均加速70倍,比Mercury BLASTN实现加速11倍。我们得出结论,高水平合成是一种有吸引力的方法来加速BLASTN算法,以满足生物搜索的高性能需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信