Approaching SMM4H with Merged Models and Multi-task Learning

Tilia Ellendorff, Lenz Furrer, N. Colic, Noëmi Aepli, Fabio Rinaldi
{"title":"Approaching SMM4H with Merged Models and Multi-task Learning","authors":"Tilia Ellendorff, Lenz Furrer, N. Colic, Noëmi Aepli, Fabio Rinaldi","doi":"10.18653/v1/W19-3208","DOIUrl":null,"url":null,"abstract":"We describe our submissions to the 4th edition of the Social Media Mining for Health Applications (SMM4H) shared task. Our team (UZH) participated in two sub-tasks: Automatic classifications of adverse effects mentions in tweets (Task 1) and Generalizable identification of personal health experience mentions (Task 4). For our submissions, we exploited ensembles based on a pre-trained language representation with a neural transformer architecture (BERT) (Tasks 1 and 4) and a CNN-BiLSTM(-CRF) network within a multi-task learning scenario (Task 1). These systems are placed on top of a carefully crafted pipeline of domain-specific preprocessing steps.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We describe our submissions to the 4th edition of the Social Media Mining for Health Applications (SMM4H) shared task. Our team (UZH) participated in two sub-tasks: Automatic classifications of adverse effects mentions in tweets (Task 1) and Generalizable identification of personal health experience mentions (Task 4). For our submissions, we exploited ensembles based on a pre-trained language representation with a neural transformer architecture (BERT) (Tasks 1 and 4) and a CNN-BiLSTM(-CRF) network within a multi-task learning scenario (Task 1). These systems are placed on top of a carefully crafted pipeline of domain-specific preprocessing steps.
用合并模型和多任务学习逼近SMM4H
我们描述了我们提交给第四版的健康应用社交媒体挖掘(SMM4H)共享任务。我们的团队(UZH)参与了两个子任务:在推文中提到的不利影响的自动分类(任务1)和个人健康经历提及的可概括识别(任务4)。对于我们的提交,我们在多任务学习场景(任务1)中利用基于神经转换架构(BERT)的预训练语言表示(任务1和4)和CNN-BiLSTM(-CRF)网络的集成。这些系统被放置在精心制作的特定领域预处理步骤管道之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信