Locating the Closest Singularity in a Polynomial Homotopy

J. Verschelde, Kylash Viswanathan
{"title":"Locating the Closest Singularity in a Polynomial Homotopy","authors":"J. Verschelde, Kylash Viswanathan","doi":"10.48550/arXiv.2205.07380","DOIUrl":null,"url":null,"abstract":"A polynomial homotopy is a family of polynomial systems, where the systems in the family depend on one parameter. If for one value of the parameter we know a regular solution, then what is the nearest value of the parameter for which the solution in the polynomial homotopy is singular? For this problem we apply the ratio theorem of Fabry. Richardson extrapolation is effective to accelerate the convergence of the ratios of the coefficients of the series expansions of the solution paths defined by the homotopy. For numerical stability, we recondition the homotopy. To compute the coefficients of the series we propose the quaternion Fourier transform. We locate the closest singularity computing at a regular solution, avoiding numerical difficulties near a singularity.","PeriodicalId":243130,"journal":{"name":"Computer Algebra in Scientific Computing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Algebra in Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.07380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A polynomial homotopy is a family of polynomial systems, where the systems in the family depend on one parameter. If for one value of the parameter we know a regular solution, then what is the nearest value of the parameter for which the solution in the polynomial homotopy is singular? For this problem we apply the ratio theorem of Fabry. Richardson extrapolation is effective to accelerate the convergence of the ratios of the coefficients of the series expansions of the solution paths defined by the homotopy. For numerical stability, we recondition the homotopy. To compute the coefficients of the series we propose the quaternion Fourier transform. We locate the closest singularity computing at a regular solution, avoiding numerical difficulties near a singularity.
多项式同伦中最近奇异点的定位
多项式同伦是多项式系统的族,其中族中的系统依赖于一个参数。如果对于参数的一个值我们知道正则解,那么多项式同伦的解是奇异的最接近的参数值是什么?对于这个问题,我们应用了法布里的比值定理。Richardson外推可以有效地加速由同伦定义的解路径级数展开的系数比值的收敛。为了数值稳定性,我们重新条件了同伦。为了计算级数的系数,我们提出了四元数傅里叶变换。我们将最近的奇点计算定位在正则解上,避免了奇点附近的数值困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信