Homology and $K$-Theory of Torsion-Free Ample Groupoids and Smale Spaces

Valerio Proietti, M. Yamashita
{"title":"Homology and $K$-Theory of Torsion-Free Ample Groupoids and Smale Spaces","authors":"Valerio Proietti, M. Yamashita","doi":"10.14760/OWP-2020-20","DOIUrl":null,"url":null,"abstract":"Given an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the groupoid C*-algebra when the groupoid has torsion-free stabilizers and satisfies the strong Baum-Connes conjecture. The construction is based on the triangulated category approach to the Baum-Connes conjecture by Meyer and Nest. For the unstable equivalence relation of a Smale space with totally disconnected stable sets, this spectral sequence shows Putnam's homology groups on the second sheet.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"87 27 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14760/OWP-2020-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Given an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the groupoid C*-algebra when the groupoid has torsion-free stabilizers and satisfies the strong Baum-Connes conjecture. The construction is based on the triangulated category approach to the Baum-Connes conjecture by Meyer and Nest. For the unstable equivalence relation of a Smale space with totally disconnected stable sets, this spectral sequence shows Putnam's homology groups on the second sheet.
无扭充裕群与小空间的同调与$K$-理论
给出了一个充裕的群似体,在第二张表上构造了一个具有整系数群似体同调的谱序列,当群似体具有无挠稳定子且满足强Baum-Connes猜想时,收敛到群似体C*-代数的k群。该结构基于Meyer和Nest对Baum-Connes猜想的三角分类方法。对于具有完全不连通稳定集的小空间的不稳定等价关系,该谱序列在第二张表上显示了Putnam的同调群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信