Computing Wasserstein-$p$ Distance Between Images with Linear Cost

Yidong Chen, Chen Li, Z. Lu
{"title":"Computing Wasserstein-$p$ Distance Between Images with Linear Cost","authors":"Yidong Chen, Chen Li, Z. Lu","doi":"10.1109/CVPR52688.2022.00060","DOIUrl":null,"url":null,"abstract":"When the images are formulated as discrete measures, computing Wasserstein-p distance between them is challenging due to the complexity of solving the corresponding Kantorovich's problem. In this paper, we propose a novel algorithm to compute the Wasserstein-p distance between discrete measures by restricting the optimal transport (OT) problem on a subset. First, we define the restricted OT problem and prove the solution of the restricted problem converges to Kantorovich's OT solution. Second, we propose the SparseSinkhorn algorithm for the restricted problem and provide a multi-scale algorithm to estimate the subset. Finally, we implement the proposed algorithm on CUDA and illustrate the linear computational cost in terms of time and memory requirements. We compute Wasserstein-p distance, estimate the transport mapping, and transfer color between color images with size ranges from $64\\times 64$ to $1920\\times 1200$. (Our code is available at https://github.com/ucascnic/CudaOT)","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

When the images are formulated as discrete measures, computing Wasserstein-p distance between them is challenging due to the complexity of solving the corresponding Kantorovich's problem. In this paper, we propose a novel algorithm to compute the Wasserstein-p distance between discrete measures by restricting the optimal transport (OT) problem on a subset. First, we define the restricted OT problem and prove the solution of the restricted problem converges to Kantorovich's OT solution. Second, we propose the SparseSinkhorn algorithm for the restricted problem and provide a multi-scale algorithm to estimate the subset. Finally, we implement the proposed algorithm on CUDA and illustrate the linear computational cost in terms of time and memory requirements. We compute Wasserstein-p distance, estimate the transport mapping, and transfer color between color images with size ranges from $64\times 64$ to $1920\times 1200$. (Our code is available at https://github.com/ucascnic/CudaOT)
用线性代价计算Wasserstein-$p$图像之间的距离
当图像被表述为离散度量时,由于解决相应的Kantorovich问题的复杂性,计算它们之间的Wasserstein-p距离是具有挑战性的。在本文中,我们提出了一种新的算法,通过限制子集上的最优传输(OT)问题来计算离散测度之间的Wasserstein-p距离。首先定义了受限OT问题,并证明了受限问题的解收敛于Kantorovich的OT解。其次,我们针对受限问题提出了SparseSinkhorn算法,并提供了一个多尺度的子集估计算法。最后,我们在CUDA上实现了所提出的算法,并从时间和内存需求方面说明了线性计算成本。我们计算Wasserstein-p距离,估计传输映射,并在大小范围从$64\ × 64$到$1920\ × 1200$的彩色图像之间传输颜色。(我们的代码可在https://github.com/ucascnic/CudaOT找到)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信