{"title":"Computing Wasserstein-$p$ Distance Between Images with Linear Cost","authors":"Yidong Chen, Chen Li, Z. Lu","doi":"10.1109/CVPR52688.2022.00060","DOIUrl":null,"url":null,"abstract":"When the images are formulated as discrete measures, computing Wasserstein-p distance between them is challenging due to the complexity of solving the corresponding Kantorovich's problem. In this paper, we propose a novel algorithm to compute the Wasserstein-p distance between discrete measures by restricting the optimal transport (OT) problem on a subset. First, we define the restricted OT problem and prove the solution of the restricted problem converges to Kantorovich's OT solution. Second, we propose the SparseSinkhorn algorithm for the restricted problem and provide a multi-scale algorithm to estimate the subset. Finally, we implement the proposed algorithm on CUDA and illustrate the linear computational cost in terms of time and memory requirements. We compute Wasserstein-p distance, estimate the transport mapping, and transfer color between color images with size ranges from $64\\times 64$ to $1920\\times 1200$. (Our code is available at https://github.com/ucascnic/CudaOT)","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
When the images are formulated as discrete measures, computing Wasserstein-p distance between them is challenging due to the complexity of solving the corresponding Kantorovich's problem. In this paper, we propose a novel algorithm to compute the Wasserstein-p distance between discrete measures by restricting the optimal transport (OT) problem on a subset. First, we define the restricted OT problem and prove the solution of the restricted problem converges to Kantorovich's OT solution. Second, we propose the SparseSinkhorn algorithm for the restricted problem and provide a multi-scale algorithm to estimate the subset. Finally, we implement the proposed algorithm on CUDA and illustrate the linear computational cost in terms of time and memory requirements. We compute Wasserstein-p distance, estimate the transport mapping, and transfer color between color images with size ranges from $64\times 64$ to $1920\times 1200$. (Our code is available at https://github.com/ucascnic/CudaOT)