Parameter Estimation, Bias Correction and Uncertainty Quantification in the Vasicek Credit Portfolio Model

Marius Pfeuffer, Maximilian Nagl, M. Fischer, D. Roesch
{"title":"Parameter Estimation, Bias Correction and Uncertainty Quantification in the Vasicek Credit Portfolio Model","authors":"Marius Pfeuffer, Maximilian Nagl, M. Fischer, D. Roesch","doi":"10.21314/JOR.2020.429","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the parameterization of correlations in the Vasicek credit portfolio model. First, we analytically approximate standard errors for value-at-risk and expected shortfall based on the standard errors of intra-cohort correlations. Second, we introduce a novel copula-based maximum likelihood estimator for inter-cohort correlations and derive an analytical expression of the standard errors. Our new approach enhances current methods in terms of both computing time and, most importantly, direct uncertainty quantification. Both contributions can be used to quantify a margin of conservatism, which is required by regulators. Third, we illustrate powerful procedures that reduce the well-known bias of current estimators, showing their favorable properties. Further, an open-source implementation of all estimators in the novel R package AssetCorr is provided and selected estimators are applied to Moody’s Default & Recovery Database.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOR.2020.429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is devoted to the parameterization of correlations in the Vasicek credit portfolio model. First, we analytically approximate standard errors for value-at-risk and expected shortfall based on the standard errors of intra-cohort correlations. Second, we introduce a novel copula-based maximum likelihood estimator for inter-cohort correlations and derive an analytical expression of the standard errors. Our new approach enhances current methods in terms of both computing time and, most importantly, direct uncertainty quantification. Both contributions can be used to quantify a margin of conservatism, which is required by regulators. Third, we illustrate powerful procedures that reduce the well-known bias of current estimators, showing their favorable properties. Further, an open-source implementation of all estimators in the novel R package AssetCorr is provided and selected estimators are applied to Moody’s Default & Recovery Database.
Vasicek信用组合模型的参数估计、偏差校正和不确定性量化
本文研究了Vasicek信贷组合模型中相关性的参数化问题。首先,我们根据队列内相关性的标准误差分析近似风险价值和预期不足的标准误差。其次,我们引入了一种新的基于copula的队列间相关性极大似然估计,并推导了标准误差的解析表达式。我们的新方法在计算时间和最重要的是直接不确定性量化方面增强了现有方法。这两种贡献都可以用来量化监管机构所要求的保守主义边际。第三,我们说明了强大的程序,以减少众所周知的偏差,目前的估计,显示其有利的性质。此外,还提供了新颖的R软件包AssetCorr中所有估算器的开源实现,并将选定的估算器应用于穆迪的违约和恢复数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信