Matrix completion and low-rank SVD via fast alternating least squares

T. Hastie, R. Mazumder, J. Lee, R. Zadeh
{"title":"Matrix completion and low-rank SVD via fast alternating least squares","authors":"T. Hastie, R. Mazumder, J. Lee, R. Zadeh","doi":"10.5555/2789272.2912106","DOIUrl":null,"url":null,"abstract":"The matrix-completion problem has attracted a lot of attention, largely as a result of the celebrated Netflix competition. Two popular approaches for solving the problem are nuclear-norm-regularized matrix approximation (Candès and Tao, 2009; Mazumder et al., 2010), and maximum-margin matrix factorization (Srebro et al., 2005). These two procedures are in some cases solving equivalent problems, but with quite different algorithms. In this article we bring the two approaches together, leading to an efficient algorithm for large matrix factorization and completion that outperforms both of these. We develop a software package softlmpute in R for implementing our approaches, and a distributed version for very large matrices using the Spark cluster programming environment.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"433","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2912106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 433

Abstract

The matrix-completion problem has attracted a lot of attention, largely as a result of the celebrated Netflix competition. Two popular approaches for solving the problem are nuclear-norm-regularized matrix approximation (Candès and Tao, 2009; Mazumder et al., 2010), and maximum-margin matrix factorization (Srebro et al., 2005). These two procedures are in some cases solving equivalent problems, but with quite different algorithms. In this article we bring the two approaches together, leading to an efficient algorithm for large matrix factorization and completion that outperforms both of these. We develop a software package softlmpute in R for implementing our approaches, and a distributed version for very large matrices using the Spark cluster programming environment.
基于快速交替最小二乘的矩阵补全和低秩奇异值分解
矩阵补全问题吸引了很多关注,主要是因为著名的Netflix竞争。解决这个问题的两种流行方法是核范数正则化矩阵近似(cand和Tao, 2009;Mazumder et al., 2010)和最大边际矩阵分解(Srebro et al., 2005)。这两种程序在某些情况下解决等价的问题,但使用完全不同的算法。在本文中,我们将这两种方法结合在一起,从而产生一种有效的大矩阵分解和补全算法,其性能优于这两种方法。我们在R中开发了一个软件包softmpute来实现我们的方法,并使用Spark集群编程环境开发了一个用于非常大的矩阵的分布式版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信